Skip to content

Latest commit

 

History

History
76 lines (56 loc) · 2.03 KB

README.md

File metadata and controls

76 lines (56 loc) · 2.03 KB

Export NCNN Model By PNNX with TorchScript

Export TorchScript

python ./deploy/NCNN/export_torchscript.py \
  --weights yolov6lite_s.pt \
  --img 320 320 \
  --batch 1

Description of all arguments

  • --weights : The path of yolov6 model weights.
  • --img : Image size of model inputs.
  • --batch : Batch size of model inputs.
  • --device : Export device. Cuda device : 0 or 0,1,2,3 ... , CPU : cpu .

Export NCNN with TorchScript

  • Download tools from PNNX

  • Usage

    Unzip the pnnx-YYYYMMDD-PLANTFORM.zip and add the pnnx to your PATH .

    Then run the following command to export ncnn model :

    mkdir -p work_dir
    mv yolov6lite_s.torchscript work_dir
    cd work_dir
    pnnx yolov6lite_s.torchscript inputshape=[1,3,320,320]f32

    You will get yolov6lite_s.ncnn.bin and yolov6lite_s.ncnn.param in work_dir .

    If you want to try int8 quantization, you can get more information from here .

Run inference with NCNN-Python

python3 deploy/NCNN/infer-ncnn-model.py \
  data/images/image1.jpg \
  work_dir/yolov6lite_s.ncnn.param \
  work_dir/yolov6lite_s.ncnn.bin \
  --img-size 320 320 \
  --max-stride 64 \
  --show

Description of all arguments

  • img : The path of image you want to detect.
  • param : The NCNN param path.
  • bin : The NCNN bin path.
  • --show : Whether to show detection resulut.
  • --out-dir : The output path to save detection result.
  • --img-size : The image height and width for model input.
  • --max-stride : The yolov6 lite model max stride.

Notice!

If you want to try norm yolov6 model such as yolov6n/s/m/l, you should add --max-stride 32 flags .

Download