Skip to content

Latest commit

 

History

History

TensorRT

YOLOv6-TensorRT in C++

Dependencies

  • TensorRT-8.2.3.0
  • OpenCV-4.1.0

Step 1: Get onnx model

Follow the file ONNX README to convert the pt model to onnx yolov6n.onnx. Now don't support end2end onnx model which include the nms plugin

python ./deploy/ONNX/export_onnx.py \
    --weights yolov6n.pt \
    --img 640 \
    --batch 1

Step 2: Prepare serialized engine file

Follow the file post training README to convert and save the serialized engine file yolov6.engine.

python3 onnx_to_tensorrt.py --model ${ONNX_MODEL} \
        --dtype int8  \
        --max_calibration_size=${MAX_CALIBRATION_SIZE} \
        --calibration-data=${CALIBRATION_DATA} \
        --calibration-cache=${CACHE_FILENAME} \
        --preprocess_func=${PREPROCESS_FUNC} \
        --explicit-batch \
        --verbose

Step 3: build the demo

Please follow the TensorRT Installation Guide to install TensorRT.

And you should set the TensorRT path and CUDA path in CMakeLists.txt.

If you train your custom dataset, you may need to modify the value of num_class, image width height, and class name.

const int num_class = 80;
static const int INPUT_W = 640;
static const int INPUT_H = 640;
static const char* class_names[] = {
        "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"
    };

build the demo:

mkdir build
cd build
cmake ..
make

Then run the demo:

./yolov6 ../you.engine -i image_path

Evaluate the performance

You can evaluate the performance of the TensorRT model.

python deploy/TensorRT/eval_yolo_trt.py \
   --imgs_dir /path/to/images/val \
   --labels_dir /path/to/labels/val\
   --annotations /path/to/coco/format/annotation/file \ --batch 1 \
   --img_size 640 \
   --model /path/to/tensorrt/model \
   --do_pr_metric --is_coco

Tips: --is_coco: if you are evaluating the COCO dataset, add this, if not, do not add this parameter. --do_pr_metric: If you want to get PR metric, add this.

For example:

python deploy/TensorRT/eval_yolo_trt.py \
 --imgs_dir /workdir/datasets/coco/images/val2017/ \
 --labels_dir /workdir/datasets/coco/labels/val2017\
 --annotations /workdir/datasets/coco/annotations/instances_val2017.json \
 --batch 1 \
 --img_size 640 \
 --model weights/yolov6n.trt \
 --do_pr_metric --is_coco