-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathutil.py
188 lines (159 loc) · 6.61 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from __future__ import print_function, division, absolute_import
import collections
import cv2, numpy as np
import scipy.stats as st
import gpu_config
import tensorflow as tf
CameraConfig = collections.namedtuple('CameraConfig', 'fx,fy,cx,cy,w,h')
'''utilities for 2D-3D conversions
function with _op suffix returns a tf operation
'''
'''_pro: perspective transformation
_bpro: back perspective transformation
'''
# fx, fy, cx, cy, w, h
# 0, 1, 2, 3, 4, 5
_pro = lambda pt3, cfg: [pt3[0]*cfg[0]/pt3[2]+cfg[2], pt3[1]*cfg[1]/pt3[2]+cfg[3], pt3[2]]
_bpro = lambda pt2, cfg: [(pt2[0]-cfg[2])*pt2[2]/cfg[0], (pt2[1]-cfg[3])*pt2[2]/cfg[1], pt2[2]]
def xyz2uvd(xyz, cfg):
'''xyz: list of xyz points
cfg: camera configuration
'''
xyz = xyz.reshape((-1,3))
# perspective projection function
uvd = [_pro(pt3, cfg) for pt3 in xyz]
return np.array(uvd)
def uvd2xyz(uvd, cfg):
'''uvd: list of uvd points
cfg: camera configuration
'''
uvd = uvd.reshape((-1,3))
# backprojection
xyz = [_bpro(pt2, cfg) for pt2 in uvd]
return np.array(xyz)
def xyz2uvd_op(xyz_pts, cfg):
'''xyz_pts: tensor of xyz points
camera_cfg: constant tensor of camera configuration
'''
xyz_pts = tf.reshape(xyz_pts, (-1,3))
xyz_list = tf.unstack(xyz_pts)
uvd_list = [_pro(pt, cfg) for pt in xyz_list]
uvd_pts = tf.stack(uvd_list)
return tf.reshape(uvd_pts, shape=(-1,))
def uvd2xyz_op(uvd_pts, cfg):
uvd_pts = tf.reshape(uvd_pts, (-1,3))
uvd_list = tf.unstack(uvd_pts)
xyz_list = [_bpro(pt, cfg) for pt in uvd_list]
xyz_pts = tf.stack(xyz_list)
return tf.reshape(xyz_pts, (-1,))
'''as a pre-processing step
'''
def _gaussian_kern(filter_size=10, sigma=3):
'''
return an np array of a Gaussian kernel
'''
interval = (2*sigma+1.0)/(filter_size)
x = np.linspace(-sigma-interval/2., sigma+interval/2., filter_size+1)
kern1d = np.diff(st.norm.cdf(x))
kernel_raw = np.sqrt(np.outer(kern1d, kern1d))
kernel = kernel_raw/kernel_raw.sum()
return kernel
def gaussian_filter(filter_size=10, sigma=3):
gau_init = tf.constant(_gaussian_kern(filter_size,sigma), tf.float32)
with tf.variable_scope('preprocess') as scope:
try:
gaussian_filter = tf.get_variable('gaussian_filter',
initializer=gau_init, trainable=False)
gaussian_filter = tf.reshape(gaussian_filter, (filter_size,filter_size,1,1))
except ValueError:
scope.reuse_variables()
gaussian_filter = tf.get_variable('gaussian_filter',
initializer=gau_init, trainable=False)
gaussian_filter = tf.reshape(gaussian_filter, (filter_size,filter_size,1,1))
return gaussian_filter
def heatmap_from_uvd_op(uvd_pts, cfg, gaussian_filter):
'''we firstly construct a sparse tensor from the coordinate
val: the value at the center of corresponding point
'''
with tf.name_scope('preprocess'):
uvd_pts = tf.reshape(uvd_pts, (-1,3))
num_pt = uvd_pts.shape[0]
num_pt_op = tf.to_int64(num_pt)
nn = tf.range(num_pt, dtype=tf.int64)
nn = tf.reshape(nn, (-1,1))
xx = uvd_pts[:,0]
xx = tf.clip_by_value(xx, 0, cfg.w-1)
xx = tf.to_int64(xx)
xx = tf.reshape(xx, (-1,1))
yy = uvd_pts[:,1]
yy = tf.clip_by_value(yy, 0, cfg.h-1)
yy = tf.to_int64(yy)
yy = tf.reshape(yy, (-1,1))
indices = tf.concat([nn,yy,xx], axis=1)
val = 1.0
raw_hm = tf.sparse_to_dense(sparse_indices=indices,
output_shape=[num_pt_op,cfg.h,cfg.w],
sparse_values=val)
raw_hm = tf.expand_dims(raw_hm, axis=[-1])
raw_hm = tf.cast(raw_hm, tf.float32)
hm = tf.nn.conv2d(raw_hm, gaussian_filter, strides=[1,1,1,1],
padding='SAME', data_format='NHWC')
hm = tf.nn.conv2d(hm, gaussian_filter, strides=[1,1,1,1],
padding='SAME', data_format='NHWC')
hm = tf.divide(hm, tf.reduce_max(hm))
# shuffle dimensions of hm
hm_list = tf.unstack(hm, axis=0)
hm = tf.concat(hm_list, axis=2)
return hm
def heatmap_from_xyz_op(xyz_pts, cfg, gaussian_filter):
return heatmap_from_uvd_op(xyz2uvd_op(xyz_pts, cfg), cfg, gaussian_filter)
'''utilities for visualization
'''
def visHeatMap(dm, pose, ch_flag=None):
raise NotImplementedError
def visDepthMap(dm, thresh=750, isHeatmap=True):
dm[dm>thresh] = 0
ratio = 255/thresh
dm = dm*ratio
if False:
dm = dm/dm.max()
dm_color = cv2.applyColorMap(dm, cv2.COLORMAP_JET)
dm = dm_color
else:
dm = cv2.cvtColor(dm.astype('uint8'), cv2.COLOR_GRAY2BGR)
return dm
def visAnnotatedDepthMap(dm, pose, cfg, thresh=750):
dm = visDepthMap(dm, thresh)
pose = xyz2uvd(pose,cfg)
for pt2 in pose:
cv2.circle(dm, (int(pt2[0]), int(pt2[1])), 3, (0,0,255), -1)
return dm
def visAnnotatedDepthMap_uvd(dm, pose, thresh=750):
dm = visDepthMap(dm, thresh)
for pt2 in pose:
cv2.circle(dm, (int(pt2[0]), int(pt2[1])), 3, (0,0,255), -1)
return dm
'''unit test
'''
def run_heatmap_from_xyz():
from data.bigHand import BigHandDataset
pts = np.array([-67.4598, 5.3851, 584.7425, -55.6470, 8.8958, 587.4889, -35.5874, -54.6665, 583.3420, -54.7895, -53.8799, 577.8048, -71.0328, -51.3926, 573.4493, -88.8696, -46.2022, 569.1099, -32.8905, -20.8474, 553.7415, -18.7491, -39.3305, 532.7702, -19.8893, -56.4645, 516.0034, -35.5810, -69.2128, 545.6373, -35.5768, -78.8591, 520.6336, -35.2772, -75.8186, 501.8809, -52.5099, -66.7139, 535.8283, -51.0812, -74.7579, 509.5187, -51.7939, -78.6711, 488.8988, -72.3119, -85.2855, 549.0604, -73.1781, -108.2356, 532.5458, -69.9800, -125.8427, 521.5565, -101.7839, -74.5066, 557.4333, -110.1215, -92.7800, 549.8948, -117.0142, -109.9064, 545.4029
])
pts = pts.reshape((-1,)).astype(np.float32)
tf.reset_default_graph()
xyz_pts = tf.placeholder(tf.float32,(BigHandDataset.pose_dim,))
cfg = BigHandDataset.cfg
heatmap_op = heatmap_from_xyz_op(xyz_pts, cfg)
with tf.Session() as sess:
(heatmap,) = sess.run([heatmap_op], {xyz_pts:pts})
print('gaussian blurred')
summap = np.zeros((BigHandDataset.cfg.h, BigHandDataset.cfg.w))
print(heatmap.shape)
for hm in heatmap:
summap += hm
summap /= summap.max()
import matplotlib.pyplot as plt
plt.imshow(summap, interpolation='none')
plt.show()
if __name__ == '__main__':
run_heatmap_from_xyz()