Pyaerocom: Introducing a new
calculated variable

Jan Griesfeller

The goal:

e calculate the ratio of concpm10 / concpm25 for all observation
networks that provide the data

o EEA

o EBAS

o Marco Polo
o AirNow

e make it possible via the API

DATA_ID = 'EEAAQeRep.v2'
VAR_NAME = ['ratpm10pm25"']

def main():
import pyaerocom.io as pio
obs_obj = pio.ReadUngridded(DATA_ID)
obs_datal = obs_obj.read(vars_to_retrieve=VAR_NAME)
print(obs_datal)

if __name__ == "__main__"

main()
Norwegian Meteorological Institute

The concept:

- There’s three ways of doing it within pyaerocom:

1.1. within the obs network specific reading class (that’s e.g. how AeronetSun gets from od500aer
to od550aer
1.2. read the variables independently, then co-locate the variable data in time and space and then
calculate the wanted variable
1.3. do it with aeroval (which basically uses 1.2 but the results cannot be used via the API)
- pros/ cons:

1.1 works easily if all data fields are ins the same file (not the case for EEA and EBAS; it’s
the fastest way)

using 1.3. the usage would be limited to the aeroval web page. I could not find an example for
calculated obs vars although the infrastructure seems to be there

1.2 1s the most universal and works for all obs networks. It’s the slowest and uses most RAM

Norwegian Meteorological Institute

What | found:

e The functions to calculate the results are defined in the reading class:
e read eea agerep base.py

AUX_REQUIRES = {
"vmro3”: ["econeo3"],
"vmrno2": ["concno2"],
RATPM10PM25_NAME: ["concpmi@", "concpm25"],

AUX_FUNS = {
"vmro3": NotImplementedError(),
"vmrno2": NotImplementedError(),
RATPM10PM25_NAME: compute_ratpm10pm25,

https://github.com/metno/pyaerocom/blob/676521c8fba1c46c0a543d513d7ebff870c12707/pyaerocom/io/read_eea_aqerep_base.py#L175-L185

The calculation method

The existing calculation routines are usually in

pyaerocom/pyaerocom/aux_var_helpers.py

The code as it 1s imposes using a pandas DataFrame as data structure
© NO UNIT handling!

The API is not clearly defined as there’s methods using dict like

objects, ndarrays / floats or the StationData object as input data

if isinstance(data, pandas.core.frame.DataFrame):
this is used if the variable calculation is done via the API
data[outvar_name] = data[concpml@_name] / data[concpm25_name]
return data
else:
raise NotImplementedError(
f"{_name__}: Can only handle inputdata of type pandas.core.frame.DataFrame"

Logic to glue everything together

* The components to do what I wanted seemed to be existing in
pyaerocom (selecting equal stations, equal time steps, do the actual
calculations, etc) but the logic to get it called seems odd.
pyaerocom/combine vardata ungridded.py

Structure T = | g &« -
¥ & B Y
% _check_input_data_ids_and_vars(data_ids_and_vars)
% _map_same_stations(stats_short, stats_long, match_stats_how, match_stats_tol_km) |
% _combine_2_sites(stat, var, stat_other, var_other, merge_how, merge_eval_fun, match_stats_tol_km, Vi
£ combine_vardata_ungridded(data_ids_and_vars, match_stats_how="closest", match_stats_tol_km=1, n

* I could not find a usage of the existing logic (old
aerocom-evaluation?), but I did not want to break potential usages.
* Recreated the existing data structures to use the existing logic

Norwegian Meteorological Institute

https://github.com/metno/pyaerocom/blob/main-dev/pyaerocom/combine_vardata_ungridded.py

Thﬁ data structure

Iaux_info = self.post_compute[data_id] I

except KeyError:
self.post_compute[data_id] = {}
self.post_compute[data_id]["data_id"] = data_id
self.post_compute[data_id]["aux_requires"] = {}
self.post_compute[data_id]["aux_merge_how"] = {}
self.post_compute[data_id]["aux_units"] = {}
self.post_compute[data_id]["aux_funs"] = {}
to make sure the API reading logic is called later on
(and not e.g. aeroval)
| self.post_compute[data_id]["aux_flag"] = True |
The getattr calls fail without the following line

reader = self.get_lowlevel reader(data_id)
for var in vars_to_retrieve:
self.post_compute[data_id]["aux_requires"][var] = {}
self.post_compute[data_id]["aux_requires"][var][data_id] {3
self.post_compute[data_id]["aux_requires"][var][data_id] = getattr(
self._readers[data_id], "AUX_REQUIRES"

1l

)

Supported are 'combine', 'mean' and 'eval'
self.post_compute[data_id]["aux_merge_how"][var] = "eval"
self.post_compute[data_id]["aux_units"][var] = "1"

self.post_compute[data_id]["aux_funs"][var] {3

self.post_compute[data_id]["aux_funs"][var] = getattr(
self._readers[data_id], "AUX_FUNS"

)[var]

aux_info = self.post_compute[data_id] Norwegian Meteorological Institute

Conclusions

e Hardly any developer documentation exists!
e Things are too complicated and need too many resources! (e.g.
ungridded reading):

o data is read into point cloud

o out of that pandas time series are created and mostly used afterwards (inside the
UngriddedData object)

o for the calculated variables all operations are done using a pandas DataFrame

o then the point cloud is created again

e absolutely no parallelism (despite what e.g. numpy does internally
already)

e get rid of human thinking! (e.g. df.dropna() makes sense only at the
very end because in contrary to human thinking it increases max
RAM usage (for df recreation) and does not save RAM)

Norwegian Meteorological Institute

