forked from thousandbrainsproject/monty_lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloggers.py
103 lines (79 loc) · 2.85 KB
/
loggers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2024 Numenta Inc.
#
# Copyright may exist in Contributors' modifications
# and/or contributions to the work.
#
# Use of this source code is governed by the MIT
# license that can be found in the LICENSE file or at
# https://opensource.org/licenses/MIT.
import os
import torch
import yaml
class Accumulator:
"""
Custom class for accumulating values over time and averaging them.
"""
def __init__(self, operation="avg", n_vals=5):
self.operation = operation
self.n_vals = n_vals
self.reset()
def append(self, results):
assert (
len(results) == self.n_vals
), "accumulator received different number of results"
for i, (_, v) in enumerate(results.items()):
self.vals[i].append(v)
def get_avg(self, results):
for i, (k, _) in enumerate(results.items()):
if torch.is_tensor(self.vals[i][0]):
results[k] = torch.stack(self.vals[i]).mean()
else:
results[k] = torch.mean(torch.tensor(self.vals[i]))
return results
def reset(self):
self.vals = [[] for _ in range(self.n_vals)]
class PTHLogger:
"""
Custom class for logging training results over time.
Logs will be used later for visualizations
"""
def __init__(self, path, configs, do_log=True):
self.path = os.path.join(path, "pth")
os.makedirs(self.path)
self.scalars = {}
self.preds = {"dense": [], "sparse": []}
self.targets = {"target_objs": [], "target_overlaps": []}
self.configs = configs
self.do_log = do_log
self.log_configs()
def log_configs(self):
if not self.do_log:
return
yaml.dump(self.configs, open(os.path.join(self.path, "configs.yaml"), "w"))
def log_targets(self, results):
if not self.do_log:
return
if "target_objs" in results:
self.targets["target_objs"].append(results["target_objs"])
if "target_overlaps" in results:
self.targets["target_overlaps"].append(results["target_overlaps"])
def log_results(self, results):
if not self.do_log:
return
for k, v in results.items():
if k not in self.scalars:
self.scalars[k] = []
self.scalars[k].append(v)
def log_figs(self, results):
if not self.do_log:
return
if "dense" in results:
self.preds["dense"].append(results["dense"])
if "sparse" in results:
self.preds["sparse"].append(results["sparse"])
def close(self):
if not self.do_log:
return
torch.save(self.scalars, os.path.join(self.path, "scalars.pth"))
torch.save(self.preds, os.path.join(self.path, "preds.pth"))
torch.save(self.targets, os.path.join(self.path, "target.pth"))