-
Notifications
You must be signed in to change notification settings - Fork 38
/
utils.ts
45 lines (36 loc) · 1.31 KB
/
utils.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import * as tf from '@tensorflow/tfjs';
import * as fs from 'fs';
import * as jpeg from 'jpeg-js';
const mobilenet = require('@tensorflow-models/mobilenet');
const TotalChannels = 3;
const readImage = path => {
const buf = fs.readFileSync(path);
const pixels = jpeg.decode(buf, true);
return pixels;
};
const imageByteArray = (image, numChannels) => {
const pixels = image.data;
const numPixels = image.width * image.height;
const values = new Int32Array(numPixels * numChannels);
for (let i = 0; i < numPixels; i++) {
for (let channel = 0; channel < numChannels; ++channel) {
values[i * numChannels + channel] = pixels[i * 4 + channel];
}
}
return values;
};
export const readInput = img => imageToInput(readImage(img), TotalChannels);
const imageToInput = (image, numChannels) => {
const values = imageByteArray(image, numChannels);
const outShape = [image.height, image.width, numChannels] as [number, number, number];
const input = tf.tensor3d(values, outShape, 'int32');
return input;
};
const Layer = 'global_average_pooling2d_1';
const ModelPath = './model/model.json';
export const loadModel = async () => {
const mn = new mobilenet.MobileNet(1, 1);
mn.path = `file://${ModelPath}`;
await mn.load();
return (input): tf.Tensor1D => mn.infer(input, Layer).reshape([1024]);
};