This repository has been archived by the owner on Jan 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 107
/
debug_lm.py
702 lines (582 loc) · 32.6 KB
/
debug_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import regex as re
import shutil
import time
import numpy as np
import torch, torch.nn
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from dataclasses import dataclass
from fastai.basics import *
from run_generation import sample_sequence
from torch.optim import SGD
from transformers import (WEIGHTS_NAME, AdamW, WarmupLinearSchedule, WarmupConstantSchedule, WarmupCosineWithHardRestartsSchedule,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
from sp_encoder import SPEncoder
from yt_encoder import YTEncoder
import torch_xla
import torch_xla.debug.metrics as met
import torch_xla.distributed.data_parallel as dp
import torch_xla.distributed.parallel_loader as pl
import torch_xla.utils.utils as xu
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
from filelock import FileLock
import contextlib
logger = logging.getLogger(__name__)
def log_info(*args, **kwargs):
if xm.is_master_ordinal():
logger.info(*args, **kwargs)
MODEL_CLASSES = {
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
}
def bhalf(module):
return module._apply(lambda t: t.to(torch.bfloat16) if t.is_floating_point() else t)
def bn2float(module:nn.Module)->nn.Module:
"If `module` is batchnorm/LayerNorm don't use half precision."
if isinstance(module, (torch.nn.modules.batchnorm._BatchNorm, torch.nn.LayerNorm)): module.float()
for child in module.children(): bn2float(child)
return module
def model2half(model:nn.Module)->nn.Module:
"Convert `model` to half precision except the batchnorm layers."
return bn2float(bhalf(model))
@dataclass
class MovingLoss():
steps:int=1000
avg_loss = (0.0, 0.0)
def add(self, batch_loss:float):
k_s = 1 - 1/self.steps
avg_loss = self.avg_loss
self.avg_loss = (self.avg_loss[0] * k_s + batch_loss * (1-k_s),
self.avg_loss[1] * k_s + 1.0 * (1-k_s))
@property
def loss(self):
if self.avg_loss[1]:
return self.avg_loss[0] / self.avg_loss[1]
from torch.optim.lr_scheduler import LambdaLR
# half zero, half linear - warm adam first, then warm the model
class WarmupZeroSchedule(LambdaLR):
def __init__(self, optimizer, warmup_steps, last_epoch=-1):
self.warmup_steps = warmup_steps
super(WarmupZeroSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
ws = self.warmup_steps*0.3
if step < ws:
return 0.
step = step - ws
return float(step) / float(max(1.0, (self.warmup_steps - ws)))
return 1.
def print_sample(model, tokenizer, device, args):
model.eval()
raw_text = """ На словах ты Лев Толстой,\n А на деле -"""
context_tokens = tokenizer.encode(raw_text)
out = sample_sequence(
model=model,
context=context_tokens,
length=500,
temperature=1,
top_k=0,
top_p=0.9,
device=device,
max_input=0
#is_xlnet=bool(args.model_type == "xlnet"),
)
out = out[0, len(context_tokens):].tolist()
text = raw_text + tokenizer.decode(out)
log_info(text)
if xm.is_master_ordinal():
with open(os.path.join(args.output_dir, 'sample.txt'), 'w') as f:
f.write(text)
model.train()
class TextDataset(Dataset):
@staticmethod
def process_file(file_path, tokenizer, block_size, shuffle):
directory, filename = os.path.split(file_path)
directory = os.path.join(directory, 'cached')
os.makedirs(directory, exist_ok=True)
cached_features_file = os.path.join(directory, f'cached_lm_{block_size}_{tokenizer.hash}_{filename}')
if os.path.exists(cached_features_file):
with open(cached_features_file, 'rb') as handle:
tokenized_text = pickle.load(handle)
else:
with open(file_path, encoding="utf-8") as f:
text = f.read()
if hasattr(tokenizer, 'encode'):
tokenized_text = tokenizer.encode(text)
else:
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
with open(cached_features_file, 'wb') as handle:
pickle.dump(tokenized_text, handle, protocol=pickle.HIGHEST_PROTOCOL)
examples = []
# add random shift
max_shift = max(min(block_size, len(tokenized_text) - block_size), 0)
rnd_shift = random.randrange(max_shift) if max_shift and shuffle else 0
for i in range(rnd_shift, len(tokenized_text)-block_size+1, block_size):
examples.append(tokenizer.add_special_tokens_single_sentence(tokenized_text[i:i+block_size]))
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should loook for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
return examples
def __init__(self, tokenizer, file_path='train', args=None, shuffle=True):
self.args = args
if not hasattr(tokenizer, 'hash'): tokenizer.hash = ''
log_info(f"Loading features from {file_path}")
if os.path.isfile(file_path):
files = [file_path]
else:
assert os.path.isdir(file_path)
files = glob.glob(os.path.join(file_path, '*.txt'))
files = sorted(files)
if shuffle: random.shuffle(files)
# The dataset can be big, like 230G big. Also, if you train on TPU you need a copy for each of 8 cores.
# That is why we take a sample and then do resampling each args.reload_data_file epochs.
# Even if dataset isn't that big it's still good because there is a random shift during dataloading. You can
# consider it as a data augmentation technique.
# In case of TPU, you need to make sure initial random seed is the same for each process or TPU will freeze because of
# different datasets.
files = files[:1000]
self.examples = []
for fn in tqdm(files, disable=not xm.is_master_ordinal()):
self.examples.extend(self.process_file(fn, tokenizer, args.block_size, shuffle))
# num of batches as multiples of 8
# only for train
if shuffle:
mult = 8*args.train_batch_size * xm.xrt_world_size()
new_len = len(self.examples) // mult * mult
random.shuffle(self.examples)
self.examples = self.examples[:new_len]
def __len__(self):
return len(self.examples)
def __getitem__(self, item):
return torch.tensor(self.examples[item])
def load_and_cache_examples(args, tokenizer, evaluate=False):
dataset = TextDataset(tokenizer, file_path=args.eval_data_file if evaluate else args.train_data_file, args=args, shuffle=not evaluate)
return dataset
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def _rotate_checkpoints(args, checkpoint_prefix, use_mtime=False):
if not args.save_total_limit:
return
if args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
glob_checkpoints = glob.glob(os.path.join(args.output_dir, '{}-*'.format(checkpoint_prefix)))
if len(glob_checkpoints) <= args.save_total_limit:
return
ordering_and_checkpoint_path = []
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match('.*{}-([0-9]+)'.format(checkpoint_prefix), path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
log_info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def mask_tokens(inputs, tokenizer, args):
""" Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, args.mlm_probability)
special_tokens_mask = [tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -1 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
# from transformers/modeling_utils.py, adapted to tpu
def save_pretrained(model, save_directory):
""" Save a model and its configuration file to a directory, so that it
can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
"""
assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved"
# Only save the model it-self if we are using distributed training
model_to_save = model.module if hasattr(model, 'module') else model
# Save configuration file
model_to_save.config.save_pretrained(save_directory)
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
xm.save(model_to_save.state_dict(), output_model_file)
log_info(f"Model weights saved in {output_model_file}")
def save_state(args, model, tokenizer, global_step):
def save_dir(output_dir):
os.makedirs(output_dir, exist_ok=True)
log_info(f"Saving model checkpoint to {output_dir}")
save_pretrained(model, output_dir)
tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
with open(os.path.join(output_dir, 'step.txt'), 'w') as c: c.write(str(global_step))
if xm.is_master_ordinal():
save_dir(args.output_dir)
checkpoint_prefix = 'checkpoint'
output_dir = os.path.join(args.output_dir, f'{checkpoint_prefix}-{global_step}')
save_dir(output_dir)
_rotate_checkpoints(args, checkpoint_prefix)
class SummaryWriterP(SummaryWriter):
def __init__(self, prefix=None, logdir=None, comment='', *args, **kwargs):
if prefix:
import socket
from datetime import datetime
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
logdir = os.path.join(prefix,
'runs', current_time + '_' + socket.gethostname() + comment)
super().__init__(logdir, comment, *args, **kwargs)
def build_dataloader(args, tokenizer):
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
train_sampler = RandomSampler(train_dataset)
if xm.xrt_world_size() > 1:
train_sampler = DistributedSampler(train_dataset,
num_replicas=xm.xrt_world_size(),
rank=xm.get_ordinal(),
shuffle=True)
return DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
import torch_xla.debug.metrics as met
def train(args, model, tokenizer):
""" Train the model """
if xm.is_master_ordinal():
tb_writer = SummaryWriterP(args.output_dir)
def summary_write(*args, **kwargs):
if xm.is_master_ordinal():
tb_writer.add_scalar(*args, **kwargs)
args.train_batch_size = args.per_gpu_train_batch_size #* max(1, args.n_gpu)
train_dataloader = build_dataloader(args, tokenizer)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if p.requires_grad and not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if p.requires_grad and any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
# Scale learning rate to num cores
#args.learning_rate = args.learning_rate * xm.xrt_world_size()
if args.sgd:
optimizer = SGD(optimizer_grouped_parameters, lr=args.learning_rate)
else:
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
warmup_steps = args.warmup_samples // (args.train_batch_size * xm.xrt_world_size())
if args.lr_decay:
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total)
elif args.lr_cosine:
scheduler = WarmupCosineWithHardRestartsSchedule(optimizer, warmup_steps=warmup_steps, t_total=t_total, cycles=args.num_train_epochs)
else:
scheduler = WarmupZeroSchedule(optimizer, warmup_steps=warmup_steps)
# Train!
tracker = xm.RateTracker()
log_info("***** Running training *****")
log_info(" Num Epochs = %d", args.num_train_epochs)
log_info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
log_info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (xm.xrt_world_size() if args.local_rank != -1 else 1))
log_info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
log_info(" Total optimization steps = %d", t_total)
try:
with open(os.path.join(args.model_name_or_path, 'step.txt'), 'r') as c:
global_step = int(c.readline())
except OSError as e:
global_step = 0
moving_loss = MovingLoss(10000//args.logging_steps)
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=not xm.is_master_ordinal())
try:
for epoch in train_iterator:
p_train_dataloader = pl.ParallelLoader(train_dataloader, [args.device])
epoch_iterator = tqdm(p_train_dataloader.per_device_loader(args.device), total=len(train_dataloader), desc="Iteration", disable=not xm.is_master_ordinal())
model.train()
for step, batch in enumerate(epoch_iterator):
optimizer.zero_grad()
inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
xm.optimizer_step(optimizer, barrier=True)
scheduler.step()
global_step += 1
tracker.add(args.train_batch_size)
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
ls = loss.item() # weird. if you call loss.item() only in one process, the whole thing hangs. So call on every and log in one.
moving_loss.add(ls)
summary_write('lr', scheduler.get_last_lr()[0], global_step)
epoch_iterator.set_postfix(MovingLoss=f'{moving_loss.loss:.2f}', Perplexity=f'{torch.exp(torch.tensor(moving_loss.loss)):.2f}')
if args.save_steps > 0 and global_step % args.save_steps == 0:
save_state(args, model, tokenizer, global_step)
if step >= 2: # TPU seems to like consistent epoch lenght
if xm.is_master_ordinal():
print(met.metrics_report())
exit(0)
# epoch_iterator.close()
# break
if args.max_steps > 0 and step > args.max_steps:
epoch_iterator.close()
break
# evaluate once in an epoch
if args.evaluate_during_training:
results = evaluate(args, model, tokenizer, f"checkpoint-{global_step}")
log_info(f"Eval {results}")
for key, value in results.items():
summary_write("eval_{}".format(key), value, global_step)
# reload dataset every args.reload_data_file epochs
if args.reload_data_file and (epoch+1) % args.reload_data_file == 0:
train_dataloader = build_dataloader(args, tokenizer)
# that's very slow on TPU
#print_sample(model, tokenizer, args.device, args)
except (KeyboardInterrupt, SystemExit):
save_state(args, model, tokenizer, global_step)
raise
save_state(args, model, tokenizer, global_step)
return global_step, moving_loss.loss
def evaluate(args, model, tokenizer, prefix=""):
eval_output_dir = args.output_dir
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
os.makedirs(eval_output_dir, exist_ok=True)
args.eval_batch_size = args.per_gpu_eval_batch_size
eval_dataloader = pl.ParallelLoader(DataLoader(eval_dataset, batch_size=args.eval_batch_size, shuffle=False), [args.device])
# Eval!
log_info("***** Running evaluation {} *****".format(prefix))
log_info(" Num examples = %d", len(eval_dataset))
log_info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
eval_loss = torch.tensor([0.0])
nb_eval_steps = 0
model.eval()
outputs = []
with torch.no_grad():
for batch in tqdm(eval_dataloader.per_device_loader(args.device), desc="Evaluating", disable=not xm.is_master_ordinal()):
output = model(batch, masked_lm_labels=batch) if args.mlm else model(batch, labels=batch)
outputs.append(output[0])
eval_loss = torch.stack(outputs).cpu().mean()
perplexity = torch.exp(eval_loss)
result = {
"perplexity": perplexity
}
return result
lock = None
def main(index):
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_data_file", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--reload_data_file", default=None, type=int,
help="Reload dataset every X epoch")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--eval_data_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--model_type", default="bert", type=str,
help="The model architecture to be fine-tuned.")
parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.15,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_class", default="", type=str,
help="Optional pretrained tokenizer clas")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument('--eval_steps', type=int, default=100,
help="Evaluate every X updates steps.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for optimizer.")
parser.add_argument("--sgd", action='store_true',
help="Use SGD instead of Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_samples", default=0, type=int,
help="Linear warmup over warmup_samples.")
parser.add_argument("--lr_decay", action='store_true',
help="Decay LR using WarmupLinearSchedule.")
parser.add_argument("--lr_cosine", action='store_true',
help="LR using WarmupCosineWithHardRestartsSchedule.")
parser.add_argument("--unfreeze_level", default=-1, type=int,
help="If > 0: freeze all layers except few first and last.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument('--save_total_limit', type=int, default=None,
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--first_run', action='store_true',
help="Cache init")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit/mixed precision instead of 32-bit")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
args.local_rank = index
if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm:
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling).")
if args.eval_data_file is None and args.do_eval:
raise ValueError("Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError(f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.")
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
args.n_gpu = xm.xrt_world_size()
args.device = xm.xla_device()
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if xm.is_master_ordinal() else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1))
# Set seed
# That is actually very important in case of distributed environment (like TPU). You need same dataset on every node/process.
# If you have randomness in dataset creation (like I do) you need to set the same seed in every process.
set_seed(args)
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
if os.path.exists(os.path.join(args.output_dir, WEIGHTS_NAME)):
args.model_name_or_path = args.output_dir
else:
args.first_run = True
# load model from web in single thread or file will be corrupted.
lock = FileLock("the.lock") if args.first_run else contextlib.suppress()
with lock:
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
if args.tokenizer_class: tokenizer_class = globals()[args.tokenizer_class]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
if args.block_size <= 0:
args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.fp16:
model = model2half(model)
model = model.to(args.device)
# see https://github.com/pytorch/xla/issues/1245
model.tie_weights()
def req_len(model):
return len([param for item in flatten_model(model)
for param in item.parameters()
if param.requires_grad])
# freeze all layers but few first and last
if args.unfreeze_level >= 0:
b_req_len = req_len(model)
flat = flatten_model(model)
flat = [item for item in flat if list(item.parameters())]
i_start = 3
i_end = 1
need_grads = set(flat[:i_start+args.unfreeze_level*3]) | set(flat[-(i_end+args.unfreeze_level*3):])
for item in flat:
requires_grad(item, item in need_grads)
log_info(f"Num of layers before {b_req_len}, after freeze {req_len(model)}")
log_info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train(args, model, tokenizer)
if __name__ == '__main__':
xmp.spawn(main)