-
Notifications
You must be signed in to change notification settings - Fork 17
/
ergoAutolykos.cpp
executable file
·686 lines (540 loc) · 19.2 KB
/
ergoAutolykos.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
#include "ergoAutolykos.h"
#include "cpuAutolykos.h"
std::atomic<int> end_jobs(0);
ergoAutolykos::ergoAutolykos()
{
}
ergoAutolykos::~ergoAutolykos()
{
}
#include <condition_variable>
void ergoAutolykos::SenderThread(info_t * info, BlockQueue<MinerShare>* shQueue)
{
el::Helpers::setThreadName("sender thread");
while (true)
{
MinerShare share = shQueue->get();
char logstr[2048];
LOG(INFO) << "Some GPU found and trying to POST a share: " ;
PostPuzzleSolution(info->to, (uint8_t*)&share.nonce);
}
}
uint32_t calcN(uint32_t Hblock)
{
uint32_t headerHeight;
((uint8_t *)&headerHeight)[0] = ((uint8_t *)&Hblock)[3];
((uint8_t *)&headerHeight)[1] = ((uint8_t *)&Hblock)[2];
((uint8_t *)&headerHeight)[2] = ((uint8_t *)&Hblock)[1];
((uint8_t *)&headerHeight)[3] = ((uint8_t *)&Hblock)[0];
uint32_t newN = INIT_N_LEN;
if (headerHeight < IncreaseStart)
newN = INIT_N_LEN;
else if (headerHeight >= IncreaseEnd)
newN = MAX_N_LEN;
else
{
uint32_t itersNumber = (headerHeight - IncreaseStart) / IncreasePeriodForN + 1;
for (uint32_t i = 0; i < itersNumber; i++)
{
newN = newN / 100 * 105;
}
}
return newN;
}
////////////////////////////////////////////////////////////////////////////////
// Miner thread cycle
////////////////////////////////////////////////////////////////////////////////
void ergoAutolykos::MinerThread(CLWarpper *clw, const int deviceId, const int totalGPUCards, info_t * info, std::vector<double>* hashrates, std::vector<int>* tstamps, BlockQueue<MinerShare>* shQueue)
{
AutolykosAlg solVerifier;
char threadName[20];
sprintf(threadName, "GPU %i miner", deviceId);
el::Helpers::setThreadName(threadName);
LOG(INFO) << "Gpu " << deviceId << " Started";
state_t state = STATE_KEYGEN;
//========================================================================//
// Host memory allocation
//========================================================================//
// CURL http request
json_t request(0, REQ_LEN);
// hash context
// (212 + 4) bytes
ctx_t ctx_h;
// autolykos variables
uint8_t bound_h[NUM_SIZE_8];
uint8_t mes_h[NUM_SIZE_8];
uint8_t res_h[NUM_SIZE_8];
uint8_t nonce[NONCE_SIZE_8];
char to[MAX_URL_SIZE];
char tmpBuff[PK_SIZE_8 + PK_SIZE_8 + NUM_SIZE_8];
// thread info variables
uint_t blockId = 0;
milliseconds start;
//========================================================================//
// Copy from global to thread local data
//========================================================================//
info->info_mutex.lock();
memcpy(mes_h, info->mes, NUM_SIZE_8);
memcpy(bound_h, info->bound, NUM_SIZE_8);
memcpy(to, info->to, MAX_URL_SIZE * sizeof(char));
// blockId = info->blockId.load();
info->info_mutex.unlock();
//========================================================================//
// Check GPU memory
//========================================================================//
size_t freeMem = 0;
size_t totalMem = 0;
cl_ulong max_mem_alloc_size = clw->getDeviceInfoInt64(CL_DEVICE_MAX_MEM_ALLOC_SIZE);
cl_ulong mem_size = clw->getDeviceInfoInt64(CL_DEVICE_GLOBAL_MEM_SIZE);
LOG(INFO) << "GPU " << clw->m_gpuIndex << " mem_size: " << clw->getGlobalSizeMB() << " (MB) , max_mem_alloc_size: " << clw->getMaxAllocSizeMB() << " (MB) ";
if (max_mem_alloc_size < MIN_FREE_MEMORY)
{
LOG(ERROR) << "GPU " << clw->m_gpuIndex << " Not enough GPU memory for mining,"
<< " minimum 2.8 GiB needed";
return;
}
//========================================================================//
// Device memory allocation
//========================================================================//
LOG(INFO) << "GPU " << deviceId << " allocating memory";
size_t allocatedMem = 0;
//-------------------------------------------------------------
// boundary for puzzle
cl_mem bound_d = clw->Createbuffer(NUM_SIZE_8 * sizeof(char), CL_MEM_READ_WRITE);
if (bound_d == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating hashbound_des_d";
return;
}
cl_uint* hbound_d = (cl_uint*)malloc(NUM_SIZE_8 * sizeof(char));
allocatedMem += (NUM_SIZE_8 * sizeof(char));
//-------------------------------------------------------------
// data: mes
cl_mem data_d = clw->Createbuffer((NUM_SIZE_8 ) * sizeof(char), CL_MEM_READ_WRITE);
if (data_d == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating data_d";
return;
}
cl_uint* hdata_d = (cl_uint*)malloc((NUM_SIZE_8 ) * sizeof(char));
allocatedMem += (NUM_SIZE_8 * sizeof(char));
// precalculated hashes
// N_LEN * NUM_SIZE_8 bytes // 2 GiB
cl_mem hashes_d = clw->Createbuffer((cl_uint)info->N_LEN * NUM_SIZE_8 * sizeof(char), CL_MEM_READ_WRITE);
if (hashes_d == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating hashes_d";
return;
}
allocatedMem += (cl_uint)info->N_LEN * NUM_SIZE_8 * sizeof(char);
cl_mem BHashes = clw->Createbuffer((NUM_SIZE_8)*THREADS_PER_ITER * sizeof(cl_uint), CL_MEM_READ_WRITE);
if (BHashes == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating hashes_d";
return;
}
allocatedMem += ((cl_uint)(NUM_SIZE_8)*THREADS_PER_ITER);
/////////--------------------------------------------------------------------------------------
// potential solutions of puzzle
// indices of unfinalized hashes
cl_mem indices_d = clw->Createbuffer(MAX_POOL_RES * sizeof(cl_uint), CL_MEM_READ_WRITE);
if (indices_d == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating indices_d";
return;
}
cl_uint* hindices_d = (cl_uint*)malloc(MAX_POOL_RES * sizeof(cl_uint));
allocatedMem += sizeof(cl_uint);
memset(hindices_d, 0, MAX_POOL_RES * sizeof(cl_uint));
clw->CopyBuffer(indices_d, hindices_d, MAX_POOL_RES * sizeof(cl_uint), false);
cl_mem count_d = clw->Createbuffer(sizeof(cl_uint), CL_MEM_READ_WRITE);
if (count_d == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating count_d";
return ;
}
cl_uint* hcount_d = (cl_uint*)malloc(sizeof(cl_uint));
allocatedMem += sizeof(cl_uint);
memset(hcount_d, 0, sizeof(cl_uint));
clw->CopyBuffer(count_d, hcount_d, sizeof(cl_uint), false);
//========================================================================//
// Autolykos puzzle cycle
//========================================================================//
cl_uint countOfP = 0;
cl_ulong base = 0;
cl_ulong EndNonce = 0;
cl_uint height = 0;
PreHashClass *ph = new PreHashClass(clw);
MiningClass *min = new MiningClass(clw);
int cntCycles = 0;
int NCycles = 50;
start = duration_cast<milliseconds>(system_clock::now().time_since_epoch());
uint32_t oldN = INIT_N_LEN;
// wait for the very first block to come before starting
while (info->blockId.load() == 0) {}
do
{
++cntCycles;
if (!(cntCycles % NCycles))
{
milliseconds timediff
= duration_cast<milliseconds>(
system_clock::now().time_since_epoch()
) - start;
// change avg hashrate in global memory
(*hashrates)[deviceId] = (double)NONCES_PER_ITER * (double)NCycles
/ ((double)1000 * timediff.count());
start = duration_cast<milliseconds>(
system_clock::now().time_since_epoch()
);
(*tstamps)[deviceId] = start.count();
}
// if solution was found by this thread wait for new block to come
if (state == STATE_KEYGEN)
{
while (info->blockId.load() == blockId)
{
//LOG(INFO) << "GPU " << deviceId << " solution was found by this thread wait for new block to come ";
}
state = STATE_CONTINUE;
}
while (!info->doJob)
{
//LOG(INFO) << "GPU " << deviceId << " problem in proxy ";
}
uint_t controlId = info->blockId.load();
if (blockId != controlId)
{
// if info->blockId changed
// read new message and bound to thread-local mem
info->info_mutex.lock();
memcpy(&height, info->Hblock, HEIGHT_SIZE);
info->N_LEN = calcN(height);
if (oldN != info->N_LEN)
{
clReleaseMemObject(hashes_d);
hashes_d = clw->Createbuffer((cl_uint)info->N_LEN * NUM_SIZE_8 * sizeof(char), CL_MEM_READ_WRITE);
if (hashes_d == NULL)
{
LOG(INFO) << "GPU " << deviceId << "error in allocating hashes_d";
return;
}
oldN = info->N_LEN;
}
memcpy(mes_h, info->mes, NUM_SIZE_8);
memcpy(bound_h, info->bound, NUM_SIZE_8);
memcpy(&EndNonce, info->extraNonceEnd, NONCE_SIZE_8);
//divide nonces between gpus
memcpy(&EndNonce, info->extraNonceEnd, NONCE_SIZE_8);
memcpy(&base, info->extraNonceStart, NONCE_SIZE_8);
cl_ulong nonceChunk = 1 + (EndNonce - base) / totalGPUCards;
base = *((cl_ulong *)info->extraNonceStart) + deviceId * nonceChunk;
EndNonce = base + nonceChunk;
info->info_mutex.unlock();
LOG(INFO) << "GPU " << deviceId << " read new block data";
blockId = controlId;
VLOG(1) << "Generated new keypair,"
<< " copying new data in device memory now";
// copy boundary
memcpy(hbound_d, (void*)bound_h, NUM_SIZE_8);
// copy message
memcpy((uint8_t*)hdata_d , mes_h, NUM_SIZE_8);
cl_int ret = clw->CopyBuffer(bound_d, hbound_d, (NUM_SIZE_8 ) * sizeof(char), false);
ret = clw->CopyBuffer(data_d, hdata_d, (NUM_SIZE_8 ) * sizeof(char), false);
ch::milliseconds startP = ch::duration_cast<ch::milliseconds>(
ch::system_clock::now().time_since_epoch()
);
//LOG(INFO) << "Starting prehashing with new block data";
ph->Prehash(info->N_LEN,height, hashes_d);
ch::milliseconds ms = ch::milliseconds::zero();
ms = ch::duration_cast<ch::milliseconds>(
ch::system_clock::now().time_since_epoch()
) - startP;
LOG(INFO) << "Prehash time: " << ms.count() << " ms";
//LOG(INFO) << "Starting InitMining";
//min->InitMining(&ctx_h, (cl_uint*)mes_h, NUM_SIZE_8);
state = STATE_CONTINUE;
}
VLOG(1) << "Starting main BlockMining procedure";
memset(hcount_d, 0, sizeof(cl_uint));
clw->CopyBuffer(count_d, hcount_d, sizeof(cl_uint), false);
memset(hindices_d, 0, MAX_POOL_RES*sizeof(cl_uint));
clw->CopyBuffer(indices_d, hindices_d, MAX_POOL_RES*sizeof(cl_uint), false);
min->hBlockMining(bound_d, data_d /*mes*/, base, EndNonce, height, hashes_d,indices_d,count_d,info->N_LEN, BHashes);
VLOG(1) << "Trying to find solution";
// restart iteration if new block was found
if (blockId != info->blockId.load())
{
LOG(INFO) << "GPU " << deviceId << " blockId != info->blockId.load " ;
continue;
}
// try to find solution
cl_int ret = clw->CopyBuffer(indices_d, hindices_d, MAX_POOL_RES* sizeof(cl_uint), true);
// solution found
if (hindices_d[0])
{
LOG(INFO) << "share found";
int i = 0;
while ((hindices_d[i]) && (i < MAX_POOL_RES))
{
if (!info->stratumMode && i != 0)
{
break;
}
*((uint64_t *)nonce) = base + hindices_d[i] - 1;
uint64_t endNonceT;
memcpy(&endNonceT , info->extraNonceEnd , sizeof(uint64_t));
if ( (*((uint64_t *)nonce)) <= endNonceT )
{
bool checksol = solVerifier.RunAlg(info->mes, nonce,info->bound,info->Hblock,info->N_LEN);
if (checksol)
{
MinerShare share(*((uint64_t *)nonce));
shQueue->put(share);
if (!info->stratumMode)
{
state = STATE_KEYGEN;
//end_jobs.fetch_add(1, std::memory_order_relaxed);
break;
}
}
else
{
LOG(INFO) << " problem in verify solution, nonce: " << *((uint64_t *)nonce);
}
}
else
{
//LOG(INFO) << "nonce greater than end nonce, nonce: " << *((uint64_t *)nonce) << " endNonce: " << endNonceT;
}
i++;
}
}
base += NONCES_PER_ITER;
if (base > EndNonce) //end work
{
state = STATE_KEYGEN;
end_jobs.fetch_add(1, std::memory_order_relaxed);
}
} while (1);
}
bool ispartof(char* w1, char* w2)
{
int i = 0;
int j = 0;
while (w1[i] != '\0') {
if (w1[i] == w2[j])
{
int init = i;
while (w1[i] == w2[j] && w2[j] != '\0')
{
j++;
i++;
}
if (w2[j] == '\0') {
return true;
}
j = 0;
}
i++;
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
//
////////////////////////////////////////////////////////////////////////////////
int ergoAutolykos::startAutolykos(int argc, char ** argv)
{
//========================================================================//
// Setup log
//========================================================================//
el::Loggers::reconfigureAllLoggers(
el::ConfigurationType::Format, "%datetime %level [%thread] %msg"
);
el::Helpers::setThreadName("main thread");
char logstr[1000];
//========================================================================//
// Check GPU availability
//========================================================================//
clw = new CLWarpper*[MAX_MINER];
for (size_t i = 0; i < MAX_MINER; i++)
{
clw[i] = NULL;
}
int i, j;
char* value;
size_t valueSize;
cl_uint platformCount;
cl_platform_id* platforms;
cl_device_id* device_ids;
cl_uint maxComputeUnits;
cl_uint TotaldeviceCount = 0;
clGetPlatformIDs(0, NULL, &platformCount);
platforms = (cl_platform_id*)malloc(sizeof(cl_platform_id) * platformCount);
clGetPlatformIDs(platformCount, platforms, NULL);
for (int i = 0; i < platformCount; i++)
{
cl_uint deviceCount = 0;
clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_GPU, 0, NULL, &deviceCount);
device_ids = (cl_device_id*)malloc(sizeof(cl_device_id) * deviceCount);
clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_GPU, deviceCount, device_ids, NULL);
char *pName = NULL;
size_t size;
clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, NULL, pName, &size); // get size of profile char array
pName = (char*)malloc(size);
clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, size, pName, NULL); // get profile char array
//cout << pName << endl;
char *aMD = (char *)"AMD";
char *srcName;
if (!ispartof(pName, aMD))
{
continue;
}
for (int j = 0; j < deviceCount; j++)
{
clw[TotaldeviceCount] = new CLWarpper(platforms[i], device_ids[j]);
TotaldeviceCount++;
}
}
LOG(INFO) << "Number Of AMD GPUs: " << (int)TotaldeviceCount;
int status = EXIT_SUCCESS;
if (TotaldeviceCount <= 0)
return EXIT_SUCCESS;
//LOG(INFO) << "Using " << deviceCount << " GPU devices";
//========================================================================//
// Read configuration file
//========================================================================//
char confName[14] = "./config.json";
char * fileName = (argc == 1) ? confName : argv[1];
char from[MAX_URL_SIZE];
info_t info;
info.blockId = 0;
info.keepPrehash = 0;
LOG(INFO) << "Using configuration file " << fileName;
// check access to config file
if (access(fileName, F_OK) == -1)
{
LOG(ERROR) << "Configuration file " << fileName << " is not found";
return EXIT_FAILURE;
}
// check other required files
if ( access("MiningKernel.cl", F_OK) == -1 || access("PreHashKernel.cl", F_OK) == -1 || access("OCLdecs.h", F_OK) == -1 || access("OCLdefs.h", F_OK) == -1 )
{
LOG(ERROR) << "some required files ( MiningKernel.cl, PreHashKernel.cl, OCLdecs.h, OCLdefs.h ) are not found";
return EXIT_FAILURE;
}
// read configuration from file
status = ReadConfig(
fileName, from, info.to, info.endJob
);
if (status == EXIT_FAILURE) { return EXIT_FAILURE; }
LOG(INFO) << "Block getting URL:\n " << from;
LOG(INFO) << "Solution posting URL:\n " << info.to;
//========================================================================//
// Setup CURL
//========================================================================//
// CURL http request
json_t request(0, REQ_LEN);
// CURL init
PERSISTENT_CALL_STATUS(curl_global_init(CURL_GLOBAL_ALL), CURLE_OK);
//========================================================================//
// Fork miner threads
//========================================================================//
std::vector<std::thread> miners(TotaldeviceCount);
std::vector<std::thread> poolSenders(TotaldeviceCount);
std::vector<double> hashrates(TotaldeviceCount);
std::vector<int> lastTimestamps(TotaldeviceCount);
std::vector<int> timestamps(TotaldeviceCount);
BlockQueue<MinerShare> solQueue;
std::thread solSender(SenderThread, &info, &solQueue);
for (int i = 0; i < TotaldeviceCount; ++i)
{
if (clw[i] != NULL)
{
if (clw[i]->m_gpuIndex != -1)
{
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
hashrates[i] = -1;
lastTimestamps[i] = 1;
timestamps[i] = 0;
miners[i] = std::thread(MinerThread, clw[i], i,TotaldeviceCount, &info, &hashrates, ×tamps,&solQueue);
}
else
{
LOG(INFO) << "DONT Start Gpu " << i;
}
}
else
{
LOG(INFO) << "DONT Create Gpu " << i;
}
}
// get first block
status = EXIT_FAILURE;
while (status != EXIT_SUCCESS)
{
status = GetLatestBlock(from, &request, &info, 0);
std::this_thread::sleep_for(std::chrono::milliseconds(800));
if (status != EXIT_SUCCESS)
{
LOG(INFO) << "Waiting for block data to be published by node...";
}
}
InitializeADL(TotaldeviceCount,clw);
std::thread httpApi = std::thread(HttpApiThread, &hashrates, clw, TotaldeviceCount);
//========================================================================//
// Main thread get-block cycle
//========================================================================//
uint_t curlcnt = 0;
const uint_t curltimes = 1000;
ch::milliseconds ms = ch::milliseconds::zero();
// bomb node with HTTP with 10ms intervals, if new block came
// signal miners with blockId
while (1)
{
milliseconds start = duration_cast<milliseconds>(
system_clock::now().time_since_epoch()
);
// get latest block
status = GetLatestBlock(from, &request, &info, 0);
if (status != EXIT_SUCCESS) { LOG(INFO) << "Getting block error"; }
ms += duration_cast<milliseconds>(
system_clock::now().time_since_epoch()
) - start;
++curlcnt;
if (!(curlcnt % curltimes))
{
LOG(INFO) << "Average curling time "
<< ms.count() / (double)curltimes << " ms";
LOG(INFO) << "Current block candidate: " << request.ptr;
ms = milliseconds::zero();
std::stringstream hrBuffer;
hrBuffer << "Average hashrates: ";
double totalHr = 0;
for (int i = 0; i < TotaldeviceCount; ++i)
{
// check if miner thread is updating hashrate, e.g. alive
if (!(curlcnt % (5 * curltimes)))
{
if (lastTimestamps[i] == timestamps[i])
{
hashrates[i] = 0;
}
lastTimestamps[i] = timestamps[i];
}
hrBuffer << "GPU" << i << " " << hashrates[i] << " MH/s ";
totalHr += hashrates[i];
}
hrBuffer << "Total " << totalHr << " MH/s ";
LOG(INFO) << hrBuffer.str();
}
std::this_thread::sleep_for(std::chrono::milliseconds(60));
int completeMiners = end_jobs.load();
if (completeMiners >= TotaldeviceCount)
{
end_jobs.store(0);
JobCompleted(info.endJob);
}
}
return EXIT_SUCCESS;
}