def colorBar(mini=0, maxi=1,
nColor=100,
nLabel=4,
aspect=0.03,
colorMap="plasma"):
step=(maxi-mini)/nColor
m = np.zeros((1,nColor+1))
for i in range(nColor+1):
m[0,i] = mini + (i*step)
plt.imshow(m, cmap=colorMap, aspect=aspect*(maxi-mini),extent=(min(m[0])-0.5*step,max(m[0])+0.5*step,0,1))
plt.yticks(np.arange(0))
plt.xticks(np.arange(mini,maxi*1.1,(maxi-mini)/(nLabel+1)))
plt.show()
cmap = matplotlib.cm.get_cmap('viridis')
norm = matplotlib.colors.Normalize(vmin=0, vmax=MY_MAX)
rgba=cmap(norm(MYVALUE))
One of:
plt.plot(blalba)
plt.gcf().set_size_inches(15, 15)
Set the default figure size:
plt.rcParams["figure.figsize"] = (20,10)
plt.rcParams.update({'font.size': 14})
plt.rcParams['figure.facecolor'] = 'white'
df['date'] = df.index
sub=df[df.date.between('2022-02-14 06:37','2022-02-15 06:37')]
You need to set a column because DateTimeIndex
do not have between()
while Timestamp
do.
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20,10)
plt.rcParams.update({'font.size': 14})
from matplotlib.ticker import (MultipleLocator, AutoMinorLocator)
plt.gca().yaxis.set_minor_locator(MultipleLocator(0.1))
plt.grid()
plt.grid(which="minor",alpha=0.2)
For dates:
import matplotlib.dates as mdates
plt.gca().yaxis.set_minor_locator(mdates.DayLocator(interval=5))
plt.grid()
plt.grid(which="minor",alpha=0.2)
plt.gca().set_xticks(tickLocationArray)
plt.gca().set_xticklabels(labelArray)
For dates:
plt.gcf().autofmt_xdate()
For non-date one:
plt.xticks(rotation=30)
from matplotlib.dates import DateFormatter
plt.gca().xaxis.set_major_formatter(DateFormatter("%b-%d"))
cmap = plt.get_cmap("tab10")
col0 = cmap(0)
See also: https://stackoverflow.com/questions/42086276/get-default-line-colour-cycle
Or use those name: C0
,C1
,C2
,...
lastCol = plt.gca().lines[-1].get_color()
# Do all your plot with label in
# Store all your labels in array: labelList
ax=plt.gca()
for line, name in zip(ax.lines, labelList):
y = line.get_ydata()[-1]
x = line.get_xdata()[-1]
text = ax.annotate(name,
xy=(x, y),
xytext=(0, 0),
color=line.get_color(),
textcoords="offset points")
fig=plt.figure(figsize=(20,18)) # Optional: define figure size
ax1 = plt.subplot(211) # in a 2 rows, 1 cols setup, figure 1, : we call it ax1
ax2 = plt.subplot(212) # in a 2 rows, 1 cols setup, figure 2, : we call it ax2
plt.sca(ax1) # We now plot on to ax1
plt.plot(....)
plt.legend( ...)
plt.sca(ax2) # We now plot on to ax2
plt.scatter(...)
plt.subplots_adjust(wspace=0.5, hspace=0) # For tightening space between plot
plt.show()
This give merge first row and have 2 columns plot in second row.
ax1 = plt.subplot(211)
ax2 = plt.subplot(223)
ax3 = plt.subplot(224)
Require sns
import seaborn as sns
sns.kdeplot(l.spike,label = "chudleigh",
fill=True,linewidth=3,
clip=(0,4))
sns.kdeplot(c.spike,label = "crv",
fill=True,linewidth=3,
clip=(0,4))
# DECAPRECATED
#sns.distplot(l.spike, hist = False, kde = True,
# kde_kws = {'shade': True, 'linewidth': 3},
# label = "chudleigh")
#sns.distplot(c.spike, hist = False, kde = True,
# kde_kws = {'shade': True, 'linewidth': 3},
# label = "crv")
displot
, the replacement of distplot
, is actually just a wrapper around 3 functions. It's a one-line plot that suppose to do everything. You can not stack plot like with plt
. You better just use directely the plot function behind it like kdeplot
.