NTFS Documentation

Richard Russon
Yuval Fledel

NTFS Documentation
by Richard Russon and Yuval Fledel

Abstract

Thisistechnical documentation, created to help the programmer.
It was originally written to complement the Linux NTFS driver [http://linux-ntfs.sourceforge.net/].

The latest version is available online at: http://linux-ntfs.sourceforge.net/ntfs/index.html and can be
downloaded from: http://sourceforge.net/proj ect/showfiles.php?group_id=13956

We're confident that the information is correct. We think we know where there are gaps in our know-
ledge. We may be wrong. Beware.

For simple answers to common questions, try reading the NTFS FAQ
[http://linux-ntfs.sourceforge.net/info/ntfs.html].

http://linux-ntfs.sourceforge.net/
http://linux-ntfs.sourceforge.net/ntfs/index.html
http://sourceforge.net/project/showfiles.php?group_id=13956
http://linux-ntfs.sourceforge.net/info/ntfs.html

Table of Contents

L PIOIOQUE ..t 1
1. NTFS Documentation Prefaceovee i 1
2. About the NTFS DOCUMENTALTIONc.uuiiiiiiiie e e 1
B TADIESLEOENG ... 3
Y 100 T = 1Yo | 4

2. NTES ATITDULES ..o et e et eeeaan s 7
O Y= = 7
2. Attribute - $STANDARD _INFORMATION (0X10) ..uuuiviviieeiiiiieeeeiineeeeiieeeeeiines 7
3. Attribute - SATTRIBUTE_LIST (0X20) ...uuivviiiieeiiiiie e e e et e e e e e 9
4. Attribute - SFILE_NAME (0X30) ..uuieeeiiieiiiiiieee e e e e e 11
5. Attribute - SOBIECT _ID (0X40)vuuieiieiiieeeiiin ettt e et e e et e e e eeeaa e eeenns 13
6. Attribute - $SECURITY _DESCRIPTOR (0X50) ...cccvvuniiiiiiiieeieiiieeeeiine e eeeenn 14
7. Attribute - SVOLUME_NAME (OXB0)c..eoveeieeeeeeereeeeeneeeeeeeeeeeeeeee e e 22
8. Attribute - $VOLUME_INFORMATION (OX70) ...ccvvvnieiiiiiieeeiiiieeeeiieeeeeiieeeeannns 23
9. Attribute - SDATA (OX80) evvunieeeiiiieeeiii e et e e et e e et e e e e e e et e e e e e e eaaans 24
10. Attribute - SINDEX_ROOT (0X90) ..ueiviiiieiiiiiieeeeeiineeeeeiiseeeeeiiseeeeeiineeeenienaeeens 25
11. Attribute - SINDEX_ALLOCATION (OXAD) eevvuieiieiieeeiiiineeeeeiie e e et e eeiinee e 28
12. Attribute - SBITMAP (OXBO) ...eiiiiiieiiiii e 29
13. Attribute - SREPARSE_POINT (OXCO)cvveuieieeeeeeeeeeeeeeeeeeie e, 30
14. Attribute - SEA_INFORMATION (OXDO0) ...ccvvvvnieiiiiiieeeiiiineeeeiiseeeeein e eeaiineeeens 32
15. Attribute - SEA (OXEQ) ...uiiiiiiieeiiie et e e 33
16. Attribute - SLOGGED_UTILITY_STREAM (0X100)ccvvvvnieiiiiiiieeeiiineeeeiiineeees 34

G NV I S 1= PRSP 35
L OVEIVIEIW ettt e et e et e et e e et e b e aae 35
P2\ I Y 1=V I (0 TP 36
3. NTFSFIES: BMETMIIT (L) tovvuieeiiiieeiiie et e e e e e aaa e e eaaans 37
A NTFSFIES: SLOGFIIE (2) wovvniiiiiiiieiiiie ettt 38
5. NTFSFIES SVOIUME (3) wuvvviniieiiiieiiiiie et e e e e e 43
6. NTFS FIeS: SAIDES (4) eevreieeii e 43
7.NTFSFiles: . (ROOt DIir€CtOry) (5) eveveeeriereiieieieeeiieeei e ee e e e e e e e e e ean e eeees 46
8. NTFS FIES: $BItMaP (B) «.vvvvunneeeeeeeeiiiiiaeee e et e et e e e e et e e e e e e eaeeeea e e e e 47
Q. NTFS FIES: BBOO (7) .vvuieeeiiiieeiiii et e ettt e e e e e et e e e e e eanans 48
10. NTFSFIles: SBaCIUS (8) ...vvvvuieeieiiieiiiiiiieeeiie e e ettt e e et e et eeeat e eeeane e eaees 50
11 NTFS FIES: $SECUIE () . .eeeeiiieeiiiii ettt e ettt e e e e et e e e eabenaeeees 51
12. NTFS FIES: BUPCESE (10) evvvneiiiiiiieeiiiiie et e et e et e e et eeeeneneeeees 54
13. NTFS FIES: SEXENA (11) ovvvvvneiieiiieeeiiii ettt e et e e eea e eees 55
14. NTFS Files: SOBJIA (ANY) .veerieieieieeeeee e, 55
15. NTFS Files: $3QuOota (NT:9, 2KIANY) oiiiiiiieeiiiie e e e e e e e 57
16. NTFS FleS: BREPAISE (ANY) ..uueuuuiuinnnniiniininieitinieinenannneeneeeeneenenneeseeneennennennennes 59
17. NTFSFIES: SUSNIMNI (ANY) 1oriiiiiiee e e e e e e e e e e e eaanaanas 60

VI S Y 0] 0 o 64
L OVEIVIEIW ittt e et e et e et e e et e e aee 64
2. Concept - Attribute HEBOEYcooviiiiiii e 64
3.Concept - ATHHDULE 1A ... 68
4, CONCEPL - BY TrEES ettt 68
L Oe g o= oL A O 11 (= = 72
6. CoNCEPL - COllAtONcveiiiii e 73
7. CoNCEPL - COMPIESSION ...vuierneeeeeete e e eeet e eea e e et s eet e e eean e eenaeenaeernaeranaerees 74
8. CoNCEPt - DABRUNS ..ottt 77
9. CONCEPL = DITECLOMY ..ttt ettt e e e e enans 84
10. CONCEPL = Il ..t e 86
11. Concept - FIE RECOM ... cuuieeii e e e 88
12. Concept - FIIE REFEIENCE .. cvvvciiii i e 92

NTFS Documentation

13. Concept - FIlename NaMESPECEccvvueerieiiieeie e e e e e e e e e e e e e e e e eaanees 92
I 0] g 1o~ o ARl D o J P 93
15. Concept - INAEX HEBAEYoovuniiiiiii e 96
16. ConCept - INAEX RECONcoevtieiiiiii e 97
17. CoNCEPL - LINKS .eneetii et 99
18. CoNCEPL - RESLAIneeeeeee e 99
19, CONCEPL - SID .oieiiii e 99
DO O = o S o= = 103
B EPIOQUE .ot 104
T o5 o PP 104
2. UNanSWEred QUESLIONSceuiiiiii e e e et e e e e e e e et eaa e anaas 105
G T e Y P 106
APPENAIX | LICENSE . oeei it e e e e e e e e e e e e e aaas 110
1. GNU Free Documentation LiCENSEviiiuunieeiiiiie ettt 110
GlOSSANY ettt et e e e 115

List of Tables

1.1 Sizefieldstable 16gendooeiniiiii i 3
1.2. Anexamplefor anindex tablecocoeiiiiiiiii i 4
1.3. NTFSvolume versionsfor €aCh OSoiiiiiiiii e 4
1.4. Layout of afreshly formatted NTFESVOIUMEcoouuiiiiiiiiiiii e 4
2.1, Standard NTFS ATHDULESiiiiiiiiei e e e e e e e s 7
2.2. Layout of the $SSTANDARD_INFORMATION (0x10) attributecoovvveeriiiineeiiiinnnn. 8
2.3 FIlEPEMISSIONS ...t 8
2.4. Layout of the SATTRIBUTE_LIST (0x20) attributecoovvviiiiiiiiiiiiiiineiciiieeeeeeen, 10
2.5. Layout of the SFILE_NAME (0X30) @HtriDUEc.eoveeveieeeeeeeeeeeeeeieeeeeee e, 11
2.6, FIlE I AOS .. et 12
2.7. Layout of the SOBJECT _ID (0x40) @tribULEccvvvrieiiiiieeiiiiieeeeiiieeeeeii e e e e eanens 13
2.8. Layout of the $SECURITY_DESCRIPTOR (0x50) attributeccovvvviiiiiiiiiiiinennennn, 14
2.9. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute headerccceveeeenn. 15
2.10. LayOUL OF @M ACL .uiiiiiii e e 16
211 Layout Of AN ACE ... 16
N e O o=~ P 16
P I O { - PP 17
P N @ 1 o [= o PP 17
2.15. ACE BCCESS MEBSK ..vtiiiiiiiie ettt e et e e e et e e et e e e et neeeeaen s e eeenens 17
2.16. SID COMLENLSeeetieeeteeett et e et e et et e e e et e e et et et e e e b e e et e e e e e e eeennes 18
217, SID @XAMPIE .o 18
2.18. Security Descriptor CONtrol FIAQSveveiiiieiiiiieeeei et 18
2.19. Layout of the SVOLUME_NAME (0x60) attributeccoevvnieiiiiiiieiiiiiiieeeeiiieeeeenenn 22
2.20. Layout of the SVOLUME_INFORMATION (0x70) attributeccoevveviiviviiiinennennn, 23
2.20. VOIUME FIAGS ..niiiiiei e e e e e e 23
2.22.VolUME VErsion NUMDENScouuiiiiiiiiieeeii ettt et e et e e e e e eeeens 24
2.23. Layout of the SDATA (0x80) atriDULEceeeeeeiiiiie e e 24
2.24. Layout of the SINDEX_ROOT (0x90) attribute: an Index ROOtccovvuviiiiiieiiiinnnns 26
2.25. Layout of the SINDEX_ROQT (0x90) attribute: an Index Headerccooeeiieiiiennns 26
2.26. INAEX TLagS ...ovniii e 26
2.27. COMMON INAEXES ...ttt ettt e et e e et n e e et e e e eaaneeeenens 27
2.28. Layout of the INDEX_ALLOCATION (0XAQ) attributeccevvveiieiiiniiiiiineeeennn, 28
2.29. Layout of adataentry in the INDEX_ALLOCATION (0xAO) attribute 28
2.30. DA@ENTIY FlAOS ...eeeeieeeeit e 29
2.31. Layout of the SBITMAP (0XB0) @tribULEoevvveiiiiiiiiieeeii e 30
2.32. Layout of the SREPARSE_POINT (0xCO0) attribute (Microsoft Reparse Point) 30
2.33. Layout of the S(REPARSE_POINT (0xCO0) attribute (Third-Party Reparse Point) 30
2.34. Symbolic LiNK REPAISE Dalal ... ccuvuiveiiieeiieei e et e e e e e e e e e e e e 31
2.35. VOIUME LINK REPAISE DELAcvvueeeeiii ettt e e 31
2.36. REPAISE TAG FlAOS ... eieieiieiii ettt 31
2.37. Layout of the SEA_INFORMATION (0XDOQ) atributecvuvvvveiiiieiiiiiiieeeiiiieeeeennnn 33
2.38. Layout of the $EA (OXEQ) @LtriBULEccceeeviieiiiiiiieieeee e e e e e e 33
2.39. EA Fla0S covniiiii i 33
2.40. Layout of the SLOGGED_UTILITY_STREAM (0x100) attributeccoovvvevenneneannn. 34
3.1. Layout of filesSOnthe VOIUMEoiiiiiiiii e 35
IV 1 N 111 o 11 (=P 36
3.3. Sample records from the beginning of SMFT ..o 36
3.4, SMETMIIT AHDULES .ovvvviiiii et e et e e s e e e e e e et e e e e aeaeaenes 37
3.5, Layout Of BIMETIVIIT oeeeiiiiiiii ettt e e e e s s e e e e e e e eeanen e e e e eeeeennes 38
3.6. BLOGFIIE ALIIIDULES ... 38
3.7 BVOIUME ATITIDULEScieiii e e e e e e e e e e eaaans 43
S N L N 11 o 10 (=P 43
3.9. Layout of SATITDER ... 44

Vi

NTFS Documentation

3.10. SALrDEf CollatioN RUIESccceiieeiiiiie e e e e e et e e e e e eeaeaes 44
1L SALDES FIAOS ...eeeviieeiii et 45
3.12. $AttrDef example from WIndowS NTcoooiiiiiiiiiiee e 45
3.13. $AttrDef example from Windows 2000/XPuuuiiiiiiiiiiiiii e 46
3N 7 o () 172 111 o0 == PP 46
B0 ST = 1Yo U1 e T | () T 47
3.16. SBItMap AtIIIULESeevveee e e e e e e e aaan 47
3.17. LayOut OF SBITMIBID ...uueeiitiieeiii ettt e et e et eaans 48
3.18. BBOOt AITTDULESeveiceeii e e e 48
3.19. Layout Of BBOOLciiieiiiiiiiie ettt e e e et aaaeaeaes 49
3.20. $BaCIUS AIITOULESvvvieiie et e e e e e e e e e e eaaaes 50
321, $SECUrE ALIIDULES ...ovvvvieiii e e e e ee et e e et e s e e e e e e e et e e e e e eaeaenes 51
3.22. Layout Of SSECUMEIBSDSuiieeiieieitiiie e e e e e e ettt e e e e e e e e et e s s e e e e e e e aeaeensaeeeeeeannes 52
3.23. Layout Of SECUrEBSDHciiiiiiiiiiii et eaens 52
3.24. Layout of SSECUMEIBSIT ..o 53
3.25. BUPCESE ALIITDULES ...ttt ettt e e e e e ettt e e e e e aeeenes 54
3.26. Layout Of BUPCASE ..o oo 54
3.27. SEXIENT AHIDULESoevvviiii e e e e e eeaeaaaes 55
T2 S T @ o 1 [AN 1] o0 -SSP 55
3.29. Layout Of ODJIA:BO ...eeeiiieiiiii et 56
O @ o 1 [I o PP 56
ORI @ 110 = U 1 4] o0 =P 57
3.32. Layout of BQUOEIBOceeeeeeee e 57
3.33. Layout Of SQUOLEIBQ ...vvvrrieeeiiiiiiiiiie e e e e ee e ettt s e e e e e e e e et s s s e e e e e e e aaarae e e e e eeaaaene 58
TG T/ @ 1 o = { - o 1SRN 58
3.35. PREPAISE ALLIDULES ... 59
3.36. Layout of SREPAISEIBR ...coeeeieee e 60
O A LS N g N 1 T 1 (- 60
3.38. Layout of SUSNIMEBT ..o 61
3.39. Layout Of BUSNINEBIMBXieeeiiiiiiiiiiie e ee e e et e s e e e e e e e e bt e e e e e eaaaenes 61
3.40. BUSNIMNI r€8SON FIAGS +.vvvvvriieeeiiiieiiiie e et et e e e e e e s e e e e e e e e s e e e eeeeannes 62
341, $USNIMNI SOUrCEINFO FIAOS ...eeeeiii e 62
4.1 NTES CONCEPLS ..eveeeeieetie ettt ettt ettt e e et et e et et e e e ean e e e e ennanees 64
4.2. Layout of aresident unnamed attribute headercooviiiiiiiiiiiii e 65
4.3. Layout of aresident named attribute headerccoooiiiiiiiiiiiii 65
4.4. Layout of anon-resident unnamed attribute headerccoccoviiiiiiiiiiiii i, 66
4.5. Layout of anon-resident named attribute headercoooviiiiiiiii 66
SR A 11 g o 10 (= 1 = o R 67
A.7. DEfAUIT CIUSLEN SIZE ...ttt e e e e e e e e e e eanaaes 72
A.8. COALON TYPES ..ttt et e e et e e 73
4.9. Default collations types for standard iINdEXESocevuiiiiiiiiii e 73
4.10. Layout Of @dalarUNcoouiiiiii i e e 77
4.11. Parsed dataruns: Example 1 - Normal, Unfragmented Fileccooeiiviiiiiiinieinnns 8l
4.12. Parsed dataruns: Example 2 - Normal, Fragmented Fileccoovviiiiiiiiiiinces 82
4.13. Parsed data runs: Example 3 - Normal, Scrambled Fileccoovviiiiiiiiiiiiiiiiies 82
4.14. Parsed data runs: Example 4 - Sparse, Unfragmented Fileccooveiiiiiiiiiiiinciennnnnn, 83
4.15. Parsed data runs: Example 5 - Compressed, Unfragmented Filecccoooiiiiiiiies 84
4.16. A directory record altribDULEScouiiiniiiii e 85
A.17. A FIlereCord @trIDULESceuui i 86
4.18. Fictional named data StrEAMSuuuiiiiiii et 87
4.19. Summary Information named data StrEAMSocvivuiiiiiiiiiiei e 88
4.20. contents of Summary Information named data Streamscoovveviiieiiiiinieeiiieeeeiineen 88
4.21. Layout Of @fil@reCordo 89
4,22 FlereCord flagsccouiiiii i 90
4.23. Layout Of @fil@refEreNCevuiii i e 92
4.24. FIXup eXample: DEfOreccueiii e %!
A.25. FiXUP eXamMple: @Ter .o 95
4.26. Layout of a Standard Index HEadercooiiiiiiiiiiiiii e 96

Vii

NTFS Documentation

4.27. List Of COMMON INAEXESuvniiei e e e e e e e e s e s e aneaneanss 97
4.28. Layout of an Index record NEaOENcovuuiiiiiiiii e e 97
4.29. CommON WEl KNOWN SIDSviieitiiieeiee ettt e e aens 100
4.30. 1dentifier AULNOTITIES . ..uieieie ittt e e e e e e e e e anens 100
4,31, REIAVE THBNETIEIS .. oottt e e e e e e et e e e e eeanes 101
EC v B o0 =1 o [LS < = 101
T 7= 11 (o o1 102
4.3, DOMAIN AIIBSES ...euieeiee ettt e e e e e e e et e e anaen 102
4.35. Universal WEI-KNOWN SIDSouieiiiieiie et e s 102
4.36. NT WEIT-KNOWN SIDS ...eiiiiiiiie ettt e et e e e e e e e aees 103
122, MEBSUrEMENE UNITSviinieiiit et ettt et e et e e e e e e et e e e et e e et e e e e e eaeanan 128

viii

Chapter 1. Prologue
1. NTFS Documentation Preface

This is version 0.5 of the NTFS Documentation and is available as part of the Linux-NTFS Project
[http://linux-ntfs.sourceforge.net/]

Thisistechnical documentation, created to help the programmer.
It was originally written to complement the Linux NTFS driver [http://linux-ntfs.sourceforge.net/].

The latest version is available online at: http://linux-ntfs.sourceforge.net/ntfs/index.html and can be
downloaded from: http://sourceforge.net/proj ect/showfiles.php?group_id=13956

For simple answers to common questions, try reading the NTFS FAQ
[http://linux-ntfs.sourceforge.net/info/ntfs.html].

2. About the NTFS Documentation

2.1. Overview

NTFS is the filesystem of Windows NT, 2000 and XP. It supports almost all POSIX features, all HFS
features, and all HPFS features.

» It can dea with large capacity (up to 2 46 GB) storage units.

* It hasbuilt-in data compression.

» ltuseslogfilefor transactions.

» Byteorder: everything islittle-endian on-disk.

2.2. Documentation Layout

» Chapter 1 - Prologue: isinformation describing the documentation.

e Chapter 2 - Files: isalist of the Metadatafiles.

» Chapter 3 - Attributes: isalist of Metadata attributes.

e Chapter 4 - Concepts: isalist of objectsthat are neither file, nor attribute.

» Chapter 5 - Epilogue: is some more information about the documentation.

e Appendix | - License: isthe license under which the documentation is distributed.

* The Glossary: isawhat's what of technical terminology

2.3. Accuracy

http://linux-ntfs.sourceforge.net/
http://linux-ntfs.sourceforge.net/
http://linux-ntfs.sourceforge.net/ntfs/index.html
http://sourceforge.net/project/showfiles.php?group_id=13956
http://linux-ntfs.sourceforge.net/info/ntfs.html

Prologue

Microsoft hasn't released any documentation for NTFS. These documents have been pieced together
partly by carefully reading al the SDKs and Windows help but mostly by reverse-engineering the
filesystem.

WEe're confident that the information is correct. We think we know where there are gaps in our know-
ledge. We may be wrong. Beware.

2.4. Contact Points

You can post questions to an open forum on SourceForge [http://sourceforge.net/] at: ht-
tp://sourceforge.net/forum/forum.php?forum_id=44084

If you'd like to get more involved in the Linux project, then you can join one of the mailing lists (both
low volume).
* A generd list for NTFS: http://tiger.informatik.hu-berlin.de/cgi-bin/mailman/listinfo/linux-ntfs

* A bit moretechnical one: http://lists.sourceforge.net/lists/listinfo/linux-ntfs-dev

Alternatively, if you have any questions, suggestions or corrections, please email me.

Richard Russon

2.5. License
Copyright (C) 1996-2004 Richard Russon.
Copyright (C) 2005 Y uval Fledel.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;
e With the Invariant Sections being Thanks
» With the Front-Cover Texts being About the NTFS Documentation

* And with the no Back-Cover Texts.

A copy of the licenseisincluded in the section entitled GNU Free Documentation License.

2.6. Thanks

Many thanksto the following for their help preparing these documents.

+ Albert Cahadan

* Alex lonescu

e Anton Altaparmakov

* Bram Moolenaar (for vim)

e Damon Casale

http://sourceforge.net/
http://sourceforge.net/forum/forum.php?forum_id=44084
http://sourceforge.net/forum/forum.php?forum_id=44084
http://tiger.informatik.hu-berlin.de/cgi-bin/mailman/listinfo/linux-ntfs
http://lists.sourceforge.net/lists/listinfo/linux-ntfs-dev

Prologue

e David Dillard

* Domagoj Pensa

* Helen Custer

* Martinvon Lowis
» Olof Wolgast

* Rani Assaf

* Régis Duchesne

* Richard Russon

* Yuval Fledd

3. Tables Legend

3.1. Overview

The tables in this documentation aren't completely consistant. Below is a key to the tables showing how
various fields are represented.

3.2. Footnotes

Any table fields that have footnote marks, e.g. (), (€), will have a fuller description immediately below
the table.

3.3. Size Fields

In NTFS not all fields are of a fixed size. Some depend on the value of another field, some depend on
the contents of the field.

All the numbersin size fields arein decimal format. e.g. 12 (twelve), 42 (forty-two).

Table1.1. Sizefieldstable legend

Key Name Description

12 Fixed Thisfield istwelve byteslong. Its size is constant.

P8 Padding P8 means pad the field to an 8 byte boundary. The size of this field
could be 0 - 7 bytes. P4 means 4 byte alignment, etc (a)

\% Variable The length of this field depends on its contents. An example is a
SID. To know its length, you must decode the structure.

S X-Ref A cross-reference shows that the size is defined elsewhere in the ta-
ble. The size can be represented by any letter, except Por V.

(a) Any padding of afixed size will be displayed as afixed size.

Prologue

3.4. Indexes

Where atable represents an index, the key and data will be shown as below:

Table1.2. An examplefor an index table

Offset Size Description

0x00 2 Offset to data

0x02 2 Size of data

0x04 4 Key SID
0x08 4 Data Owner Id
0x0C 4 Data Hash

3.5. Operating System

Note that the fields are not all used in exactly the same way. NT indicates old fields whereas 2K and XP
indicate new fields.

Table1.3. NTFSvolumeversions for each OS

(OFS) NTFS Description

blank all Used by all versions of Windows
NT 1.2 Only used in Windows NT

2K 3.0 Windows 2000 and later

XP 31 New to Windows XP

repeati ng groups?
i nk paddi ng8, padding and other table features to hel p/tables
consi stant use of paddi ng/alignnment fields

4. Volume Layout

4.1. Overview

A freshly formatted NTFS volume will look like:

Table 1.4. Layout of a freshly formatted NTFS volume

M Free Space More Free Space
Meta
T data

Prologue

4.2. Notes

4.2.1. Other information

Everything isafilein NTFS. The index to these filesis the Master File Table (MFT). The MFT liststhe
Boot Sector file ($Boot), located at the beginning of the disk. $Boot also lists where to find the MFT.
The MFT also listsitself.

Located in the centre of the disk, we find some more Metadata files. The interesting ones are:
$MFTMirr and $LogFile. The MFT Mirror is an exact copy of the first 4 records of the MFT. If the
MFT is damaged, then the volume could be recovered by finding the mirror. The LogFile is journal of
al the events waiting to be written to disk. If the machine crashes, then the LogFile is used to return the
disk to asensible state.

Hidden at the end of the volume, is a copy of the boot sector (cluster 0). The only Metadata file that
makes reference to it is $Bitmap, and that only says that the cluster isin use.

4.2.2. MFT Zone

To prevent the MFT becoming fragmented, Windows maintains a buffer around it. No new files will be
created in this buffer region until the other disk space is used up. The buffer size is configurable and can
be 12.5%, 25%, 37.5% or 50% of the disk. Each time the rest of the disk becomes full, the buffer sizeis
halved.

MFT Zone Reservation |'S NOT STORED ON DI SK
MFT Zone (reserved space for MT)

1 =12.5%
2 =25 0%
3 = 37.5%
4 = 50.0%

VWhere is this stored on di sk?
volume? nft? boot?

This is the 'systemfiles' space at
t he begi nning of the disk.

Nt f sMt ZoneReser vati on

link into nft and bitnmap

» cluster size 512 bytes, 1k, 2k, 4k, 8k, 16k, 32k, 64k

« vey flexible, al the system files can be relocated, except $Boot

* supports streams named data streams

» attributes for afile can span several MFT records not necessarily contiguous or in order
» everything is an attribute, including the data

» filenames stored in Unicode

» journaling file system

Prologue

compression
security
hard links
encryption

LCNsvsVCNs

Chapter 2. NTFS Attributes

1. Overview

Each MFT FILE Record is built up from Attributes.

Thelist of possible Attributesis defined in $AttrDef.

Table2.1. Standard NTFS Attributes

Type (0N} Name

0x10 $STANDARD_INFORMATION

0x20 SATTRIBUTE_LIST

0x30 $FILE_NAME

0x40 NT $VOLUME_VERSION

0x40 2K $OBJIECT_ID

0x50 $SECURITY_DESCRIPTOR

0x60 $VOLUME_NAME

0x70 $VOLUME_INFORMATION

0x80 $DATA

0x90 $INDEX_ROOT

OxAO0 $INDEX_ALLOCATION

0xBO $BITMAP

0xCO NT $SYMBOLIC_LINK

0xCO 2K $REPARSE_POINT

0xDO $EA_INFORMATION

OxEOQ $EA

OxFO NT $PROPERTY _SET

0x100 (2K $LOGGED_UTILITY_STREAM
1.1. Notes

1.1.1. Other Information

$PROPERTY_SET, $SYMBOLIC_LINK and $VOLUME_VERSION existed in NTFS v1.2, but wer-

en't used. They no longer exist in NTFS v3.0 (that used by Win2K).

Each MFT record has a Standard Header, followed by alist of attributes (in order of ascending Attribute
Id) and an end marker. The end marker isjust four bytes: OxFFFFFFFF.

2. Attribute - $STANDARD_INFORMATION

(0x10)

NTFS Attributes

2.1. Overview

In old version of NTFS this Attribute contained little more than the DOS File Permissions and the file

times.

Windows 2000 introduced four new fields which are used to reference Quota, Security, File Size and

Logging information.

As defined in $AttrDef, this attribute has a minimum size of 48 bytes and a maximum of 72 bytes.

2.2. Layout of the Attribute (Resident)

Table 2.2. Layout of the $STANDARD_INFORMATION (0x10) attribute

Offset Size oS Description

~ ~ Standard Attribute Header

0x00 8 C Time - File Creation

0x08 8 A Time- File Altered

0x10 8 M Time - MFT Changed

0x18 8 R Time - File Read

0x20 4 DOS File Permissions

0x24 4 Maximum Number of Versions

0x28 4 Version Number

0x2C 4 Class|d

0x30 4 2K Owner Id

0x34 4 2K Security Id

0x38 8 2K Quota Charged

0x40 8 2K Update Sequence Number (USN)
2.2.1. File Permissions

Also called attributesin DOS terminol ogy.

Table 2.3. File Permissions

Flag Description

0x0001 Read-Only

0x0002 Hidden

0x0004 System

0x0020 Archive

0x0040 Device

0x0080 Normal

0x0100 Temporary

0x0200 Sparse File

0x0400 Reparse Point

NTFS Attributes

Flag Description
0x0800 Compressed

0x1000 Offline

0x2000 Not Content Indexed
0x4000 Encrypted

+ Maximum Number of Versions
Maximum allowed versions for file. Zero means that version numbering is disabled.
* Version Number
Thisfile'sversion (if any). Will be zero if Maximum Number of Versionsis zero.
+ Classld
Class Id from bidirectional Class Id index.
+ Ownerld

Owner Id of the user owning the file. ThisId is akey in the $O and $Q Indexes of the file $Quota. If
zero, then quotas are disabled.

e Security Id

This should not be confused with a Security Identifier. The Security Id isakey in the $SII Index and
$SDS Data Stream in the file $Secure.

* Quota Charged

The number of bytes this file user from the user's quota. This should be the total data size of all
streams. If zero, then quotas are disabled.

» Update Sequence Number (USN)

Last Update Sequence Number of the file. Thisis a direct index into the file $Usndrnl. If zero, the
USN Journal is disabled.

2.3. Notes
2.3.1. Other Information

If aNTFS volume is upgraded from v1.2 to v3.0, then this attribute won't be upgraded (Iengthened) until
it is accesssed.

2.3.2. Questions

Arethe Version fields and the Class |d ever used?

3. Attribute - SATTRIBUTE_LIST (0x20)

3.1. Overview

NTFS Attributes

When there are lots of attributes and space in the MFT record is short, al those attributes that can be
made non-resident are moved out of the MFT. If there is still not enough room, then an
SATTRIBUTE_LIST attribute is needed. The remaining attributes are placed in a new MFT record and
the SATTRIBUTE_LIST describes where to find them. It is very unusual to see this attribute.

3.2. Layout of the Attribute

After the standard header, this attribute contains alist of variable length records, describing the type and
location (in the MFT) of all the other attributes belonging to this file. Each record is aligned on an 8-byte

boundary.

Thelist is sorted by:

1. Attributetype

2. Attribute name (if present)

3. Seguence number

N.B. It does not list itself.

Table 2.4. Layout of the SATTRIBUTE_LIST (0x20) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Type

0x04 2 Record length

0x06 1 Name length (N)

0x07 1 Offset to Name (a)

0x08 8 Starting VCN (b)

0x10 8 Base File Reference of the attribute
0x18 2 Attribute Id (c)

Ox1A 2N Name in Unicode (if N >0)

(a) If the name doesn't exist, does this point at the attribute or zero?

(b) Starting VCN, or zero if the attribute is resident

(c) Each attribute has a unique identifier

(a) it always points to where the nane woul d be (0x1A)
0x04 record allocation (8 byte alignment)

(c) always seens to be zero,
(c) noit's only shown the first tine for a given attribute type

check

not sure about sorting by sequence nunber. VCN definitely

3.3. Notes
3.3.1. $AttrDef

10

NTFS Attributes

It can be either resident or non-resident. This attribute has a no minimum or maximum size.

3.3.2. Other Information
The offset at 0x07 isjust one byte long, unusual for an attribute.
If this attribute is non-resident, then the data runs must fit into one MFT record.

The SATTRIBUTE_LIST may be needed if thefile:

* hasalarge number of hard links (lots of file name attributes present).
» becomes very fragmented, so the data runs overflow the MFT record.
» hasacomplex security descriptor (not applicableto NTFS v3.0+

e hasmany named streams, e.g. data streams.

3.3.3. To Do

8 VCN | owest _vcn;

Lowest virtual cluster nunmber of this portion of the attribute value. This is

is non-zero for the case where one attribute does not fit into one nft record

several nft records are allocated to hold this attribute. In the latter case,

record hol ds one extent of the attribute and there is one attribute [ist entry
extent. NOTE: This is DEFIN TELY a signed value! The wi ndows driver uses cnp,

by jg when conparing this, thus it treats it as signed.

24 __ ul6 instance;
If lTowest _vcn = 0, the instance of the attribute being referenced; otherw se 0

The attribute Iist is used in case where a file need extension FILE records in
MFT to be fully described, in order to find any file attribute of this file.
This file attribute may be non-resident because its streamis likely to grow.

The extents of one non-resident attribute (if present) inmediately follow
after the initial extent. They are ordered by | owest_vcn and have their instan

4. Attribute - $FILE_ NAME (0x30)

4.1. Overview

This Attribute stores the name of the file attribute anl is always resident.

As defined in $AttrDef, this attribute has a minimum size of 68 bytes and a maximum of 578 bytes. This
equates to a maximum filename length of 255 Unicode characters.

4.2. Layout of the Attribute (Resident)

Table 2.5. Layout of the $FILE_NAME (0x30) attribute

11

NTFS Attributes

Offset Size Description

~ ~ Standard Attribute Header

0x00 8 File reference to the parent directory.

0x08 8 C Time- File Creation

0x10 8 A Time- File Altered

0x18 8 M Time - MFT Changed

0x20 8 R Time - File Read

0x28 8 Allocated size of thefile

0x30 8 Real size of thefile

0x38 4 Flags, e.g. Directory, compressed, hidden

0x3c 4 Used by EAs and Reparse

0x40 1 Filename length in characters (L)

0x41 1 Filename namespace 0x42 2L File name in Unicode (not null ter-
minated)

4.2.1. File Reference

Thisis aFile Reference to the base record of the parent directory.

4.2.2. File Size

The allocated size of afile is the amount of disk space the file is taking up. It will be a multiple of the
cluster size. The real size of thefile is the size of the unnamed data attribute. Thisis the number that will
appear in adirectory listing.

N.B. The Real Sizeis only present if the Starting VCN is zero. See the Standard Attribute Header for
more information.

4.2.3. Flags

Table 2.6. File Flags

Flag Description
0x0001 Read-Only
0x0002 Hidden
0x0004 System
0x0020 Archive
0x0040 Device
0x0080 Normal
0x0100 Temporary
0x0200 Sparse File
0x0400 Reparse Point
0x0800 Compressed
0x1000 Offline
0x2000 Not Content Indexed
0x4000 Encrypted

12

NTFS Attributes

Flag Description
0x10000000 Directory (copy from corresponding bit in MFT record)
0x20000000 Index View (copy from corresponding bit in MFT record)

4.3. Notes
4.3.1. Other Information

NTFS implements POSI X -style Hard Links by creating a file with several Filename Attributes. Each Fi-
lename Attribute has its own details and parent. When a Hard Linked file is deleted, its filename is re-
moved from the MFT Record. When the last link is removed, then the file isreally deleted.

N.B. All fields, except the parent directory, are only updated when the filename is changed. Until then,
they just become out of date. $STANDARD_INFORMATION Attribute, however, will aways be kept
up-to-date.

N.B. If the file has EAs (Extended Attributes), then the EA Field will contain the size of buffer needed.

N.B. If thefileis a Reparse Point, then the Reparse Field will give its type.

5. Attribute - $OBJECT_ID (0x40)

5.1. Overview

The Object Id was introduced in Windows 2000. Every MFT Record is assigned a unique GUID. Addi-
tionally, a record may have a Birth Volume Id, a Birth Object Id and a Domain Id, all of which are
GUIDs.

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 256 bytes.

5.2. Layout of the Attribute

Table 2.7. Layout of the SOBJECT _ID (0x40) attribute

Offset Size Name Description

~ ~ Standard Attribute Header

0x00 16 GUID Object Id Unique Id assigned to file

0x10 16 GUID Birth Volume Id Volume where file was created
0x20 16 GUID Birth Object Id Origina Object Id of file

0x30 16 GUID Domain Id Domain in which object was created

5.2.1. Birth Volume Id

Birth Volume Id isthe Object Id of the Volume on which the Object Id was allocated. It never changes.

5.2.2. Birth Object Id

Birth Object Id is the first Object Id that was ever assigned to this MFT Record. |.e. If the Object Id is
changed for some reason, this field will reflect the original value of the Object Id.

13

NTFS Attributes

5.2.3. Domain Id

Domain Id is currently unused but it is intended to be used in a network environment where the local
machine is part of a Windows 2000 Domain. This may be used in a Windows 2000 Advanced Server
managed domain.

5.3. Notes
5.3.1. Other Information

This Attribute may be just 16 bytes long (the size of one GUID).

Even if the Birth Volume, Birth Object and Domain Ids are not used, they may be present, but one or
more may be zero.

Need examples where al the fields are used.

6. Attribute - $SSECURITY_DESCRIPTOR (0x50)

6.1. Overview

Standard Attri bute Header?
The security descriptor can be summarised as:

* A header (may be flags), followed by one or two ACLs and two SIDs.
» Thefirst ACL contains auditing information and may be absent.

» The second ACL contains permissions (who can do what).

» Each ACL contains one or many ACEs.

» Each ACE containsa SID.

» Thelast two SIDs show the owner of the object (User and Group)

Table 2.8. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute

Component Description
Header Offsets to various structures
Audit ACL ACE SID ACEsfor the Audit ACL
Permissions ACL ACE SID ACEsfor the Permissions ACL
ACE SID
ACE SID
SID (User) The owner of this object
SID (Group)

14

NTFS Attributes

The security descriptor is necessary to prevent unauthorised accessto files. It stores information about:

* Theowner of thefile
» Permissions the owner has granted to other users

» What actions should be logged (auditing)

6.2. Layout of the Attribute

6.2.1. Notes
6.2.1.1. Size

Asdefined in $AttrDef, this attribute has a no minimum or maximum size.

6.3. Layout of the stream
6.3.1. Questions
» How arethe ACEs of directoriesinherited?
» How can we fit the ACEs into a normal looking Unix file system?

» How can wetie the file permissions into PAM or SMB?

e Canwe use NT authentication, somehow?

6.3.2. To Do

» Decide which Standard, and Specific, Rights relate to which filesystem activities, eg.
FILE_APPEND_DATA will allow a user to extend afile, but not create one.

» Experiment to seeif the zeros we see are padding and that the flag-like fields are flags.

» Experiment with the Generic Read / Write/ Execute / All flags.

6.3.3. Header

Table 2.9. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute header

Offset Size Description

0x00 1 Revision (a)

0x01 1 Padding

0x02 2 Control Flags (b)
0x04 4 Offset to User SID
0x08 4 Offset to Group SID

15

NTFS Attributes

Offset Size Description
0x0C 4 Offset to SACL
0x10 4 Offset to DACL

(a) Ox1 for now
(b) Usually Ox4 (DACL Present), or 0x14 (DACL Present + SACL Present). See Flags below.
(c) Thisrefersto the Auditing ACL

(d) Thisrefersto the Permissions ACL

6.4. ACL

Table 2.10. Layout of an ACL

Offset Size Description
0x00 1 ACL Revision
0x01 1 Padding (0x00)
0x02 2 ACL size

0x04 2 ACE count

0x06 2 Padding (0x0000)

The Access Control List (ACL) contains one or many ACEs.
The ACL revision is currently 0x02, on my machine.

The Win32 APIs suggest that 0x01 and 0x06 contain padding 0x00's for alignment purposes.

6.5. ACE

Table 2.11. Layout of an ACE

Offset Size Description

0x00 1 Type

0x01 1 Flags

0x02 2 Size

0x04 4 Access mask

0x08 Y, SID
6.5.1. Types

The currently implemented (in NT) Types are:

Table2.12. ACE types

16

NTFS Attributes

Value Description

0x00 Access Allowed

0x01 Access Denied

0x02 System Audit
6.5.2. Flags

Flagsis abit field. The possible values of Flags depend on the value of Type. When applied to a direct-
ory, Access Allowed or Access Denied can have flags of

Table2.13. ACE flags

Value Description

0x01 Object inherits ACE

0x02 Container inherits ACE

0x04 Don't propagate 'Inherit ACE'
0x08 Inherit only ACE

If the Typeis System Audit, then the flags can be

Table 2.14. ACE audit flags

Value Description

0x40 Audit on Success

0x80 Audit on Failure

6.5.3. Access Mask / Access Rights

The Access Mask / Rightsis abit field enumerating al the (dis)allowed actions.

Table 2.15. ACE access mask

Bit(Range) Meaning Description / Examples

0-15 Object Specific Access Rights Read data, Execute, Append data

16- 22 Standard Access Rights Delete, Write ACL, Write Owner

23 Can access security ACL

24-27 Reserved

28 Generic ALL (Read, Write, Execute) Everything below

29 Generic Execute All things necessary to execute a pro-
gram

30 Generic Write All things necessary to writeto afile

31 Generic Read All things necessary to read afile

17

NTFS Attributes

6.6. SID (Security Identifier)

A typical SID lookslike: S-1-5-21-646518322-1873620750-619646970-1110

It's composed of 'S-p-g-r-s-t-u-v'

Table2.16. SID contents

S Security

p Revision number (currently 1)

q NT Authority. This number is divided into 6 bytes (48 bit big-endian number).
r-v NT Sub-authorities (there can be many of these)

On disk the SID is stored as follows:
in dec: S-1-5-21-646518322-1873620750-619646970-1110
in hex: S-1-5-15-26891632-6fad2f0e-24efOffa-456 (5 Sub-authorities)

Table2.17. SID example

0x00 01 05 00 00 00 00 00 05
0x08 15 00 00 00 32 16 89 26
0x10 Oe 2f ad 6f fa of ef 24
0x18 56 04 00 00

NB This is a variable length structure. The could have been more, or fewer, sub-authorities making the
structure larger, or smaller.

6.6.1. Security Descriptor Control Flags

Table 2.18. Security Descriptor Control Flags

Flag Description

0x0001 Owner Defaulted
0x0002 Group Defaulted
0x0004 DACL Present

0x0008 DACL Defaulted
0x0010 SACL Present

0x0020 SACL Defaulted
0x0100 DACL Auto Inherit Reg
0x0200 SACL Auto Inherit Req
0x0400 DACL Auto Inherited
0x0800 SACL Auto Inherited
0x1000 DACL Protected
0x2000 SACL Protected

18

NTFS Attributes

Flag Description
0x4000 RM Control Valid
0x8000 Self Relative

6.6.1.1. OWNER DEFAULTED

This boolean flag, when set, indicates that the SID pointed to by the Owner field was provided by a de-
faulting mechanism rather than explicitly provided by the original provider of the security descriptor.
This may affect the treatment of the SID with respect to inheritence of an owner.

6.6.1.2. GROUP DEFAULTED

This boolean flag, when set, indicates that the SID in the Group field was provided by a defaulting
mechanism rather than explicitly provided by the original provider of the security descriptor. This may
affect the treatment of the SID with respect to inheritence of a primary group.

6.6.1.3. DACL PRESENT

This boolean flag, when set, indicates that the security descriptor contains a discretionary ACL. If this
flag is set and the Dacl field of the SECURITY DESCRIPTOR is null, then anull ACL is explicitly be-
ing specified.

6.6.1.4. DACL DEFAULTED

This boolean flag, when set, indicates that the ACL pointed to by the Dacl field was provided by a de-
faulting mechanism rather than explicitly provided by the original provider of the security descriptor.
This may affect the treatment of the ACL with respect to inheritence of an ACL. Thisflag isignored if
the DaclPresent flag is not set.

6.6.1.5. SACL PRESENT

This boolean flag, when set, indicates that the security descriptor contains a system ACL pointed to by
the Sacl field. If this flag is set and the Sacl field of the SECURITY DESCRIPTOR is null, then an
empty (but present) ACL is being specified.

6.6.1.6. SACL DEFAULTED

This boolean flag, when set, indicates that the ACL pointed to by the Sacl field was provided by a de-
faulting mechanism rather than explicitly provided by the original provider of the security descriptor.
This may affect the treatment of the ACL with respect to inheritence of an ACL. Thisflag isignored if
the SaclPresent flag is not set.

6.6.1.7. SELF RELATIVE

This boolean flag, when set, indicates that the security descriptor isin self-relative form. In thisform, all
fields of the security descriptor are contiguous in memory and all pointer fields are expressed as offsets
from the beginning of the security descriptor.

The SID structure is a variable-length structure used to uniquely identify
users or groups. SID stands for security identifier.

The standard textual representation of the SIDis of the form
S-R1-SS...

Wer e:
- The first "S" is the literal character 'S identifying the follow ng
digits as a SID.

19

NTFS Attributes

- Ris the revision level of the SID expressed as a sequence of digits
either in decimal or hexadecimal (if the later, prefixed by "0x").

- |l is the 48-bit identifier_authority, expressed as digits as R above.

- S... is one or nore sub_authority values, expressed as digits as above.

Exanple SID;, the donmamin-relative SID of the |ocal Adnministrators group on
W ndows NT/ 2k:
S-1-5-32-544

This translates to a SID with:
revision = 1,
sub_authority_count = 2,
identifier_authority = {0,0,0,0,0,5}, SECURI TY_NT_AUTHORI TY
sub_authority[0] = 32, SECURI TY_BUI LTI N_DOVAI N_RI D
sub_authority[1l] = 544 DOVAI N_ALI AS RI D_ADM NS

ACE Types

ACCESS M N_Ms_ACE_TYPE
ACCESS_ALLOVWED ACE _TYPE
ACCESS_DENI ED_ACE_TYPE
SYSTEM AUDI T_ACE_TYPE
SYSTEM ALARM ACE_TYPE

L 1L ACE Not inplenmented as of W n2k.
ACCESS _MAX_Ms V2_ACE_TYPE

ACCESS_ALLOWED COVPOUND_ACE_TYPE
ACCESS_MAX_MS_V3_ACE_TYPE

A D WWNFROO

The following are Wn2k only.
ACCESS_ M N_Ms_OBJECT_ACE _TYPE
ACCESS_ALLOWED OBJECT_ACE_TYPE
ACCESS_DENI ED_OBJECT_ACE_TYPE
SYSTEM AUDI T_OBJECT_ACE_TYPE
SYSTEM ALARM OBJECT_ACE_TYPE
ACCESS_MAX_Ms_OBJECT_ACE_TYPE

(0] [ocleo NN)N &)

ACCESS_MAX_M5_V4_ACE_TYPE

This one is for W nNT&2Kk.
ACCESS MAX Ms_ACE TYPE =8

The ACE flags (8-bit) for audit and inheritance
SUCCESSFUL_ACCESS ACE FLAG is only used with systemaudit and al arm ACE
types to indicate that a nessage is generated (in Wndows!) for successfu
accesses.

FAI LED ACCESS ACE FLAG is only used with system audit and al arm ACE types
to indicate that a nessage is generated (in Wndows!) for fail ed accesses.

The inheritance fl ags.

OBJECT_| NHERI T_ACE = 0x01

CONTAI NER_| NHERI T_ACE = 0x02
NO_PROPAGATE | NHERI T_ACE = 0x04

| NHERI T_ONLY_ACE = 0x08

| NHERI TED_ACE = 0x10 Wn2k only
VALI D_I NHERI T_FLAGS = Ox1f

The audit fl ags.

SUCCESSFUL_ACCESS ACE FLAG = 0x40

FAI LED_ACCESS ACE_FLAG = 0x80

The access mask defines the access rights.

The standard rights.

20

NTFS Attributes

DELETE = 0x00010000
READ CONTRCL = 0x00020000
VWRI TE_DAC = 0x00040000
VWRI TE_ ON\NER = 0x00080000
SYNCHRONI ZE = 0x00100000

STANDARD_RI GHTS_REQUI RED = 0x000f 0000

STANDARD _RI GHTS_READ = 0x00020000
STANDARD RI GHTS_WRI TE = 0x00020000
STANDARD_RI GHTS_EXECUTE = 0x00020000

STANDARD_RI GHTS_ALL 0x001f 0000

The access system ACL and naxi num al | owed access types.

ACCESS_SYSTEM SECURI TY = 0x01000000
MAXI MUM_ALLOWED = 0x02000000
The generic rights.

GENERI C_ALL = 0x10000000
GENERI C_EXECUTE = 0x20000000
GENERI C_ W\RI TE = 0x40000000
GENERI C_READ = 0x80000000

The object ACE flags (32-bit).
ACE_OBJECT_TYPE_PRESENT
ACE_| NHERI TED_OBJECT_TYPE_PRESENT

N =

ACL_CONSTANTS
Current revision.
ACL_REVI SI ON
ACL_REVI SI ON_DS

AN

H story of revisions.
ACL_REVI SI ON1

M N_ACL_REVI SI ON
ACL_REVI SI ON2
ACL_REVI SI ON3
ACL_REVI S| O\4
MAX_ACL_REVI SI ON

ArBRWNNE

Absol ute security descriptor. Does not contain the owner and group SIDs, nor
the sacl and dacl ACLs inside the security descriptor. Instead, it contains
pointers to these structures in nenory. Qoviously, absolute security
descriptors are only useful for in nenory representations of security
descriptors. On disk, a self-relative security descriptor is used.

Attribute: Security descriptor (0x50). A standard self-relative security
descri ptor.

NOTE: Al ways resident.

NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally
in FILE $Secure and the correct descriptor is found using the security id
fromthe standard information attribute.

On NTFS 3.0+, all security descriptors are stored in FILE $Secure. Only one
referenced i nstance of each unique security descriptor is stored.

FI LE_$Secure contains no unnaned data attribute, i.e. it has zero length. It
does, however, contain two indexes ($SDH and $SI1) as well as a naned data
stream ($SDS) .

Every uni que security descriptor is assigned a unique security identifier
(security_id, not to be confused with a SID). The security_id is unique for

21

NTFS Attributes

the NTFS volune and is used as an index into the $SII index, which maps
security_ ids to the security descriptor's storage |location within the $SDS
data attribute. The $SI| index is sorted by ascendi ng security_id.

A sinple hash is conputed fromeach security descriptor. This hash is used
as an index into the $SDH i ndex, which maps security descriptor hashes to
the security descriptor's storage location within the $SDS data attri bute.
The $SDH index is sorted by security descriptor hash and is stored in a B+
tree. Wien searching $SDH (with the intent of determ ning whether or not a
new security descriptor is already present in the $SDS data streanm), if a
mat chi ng hash is found, but the security descriptors do not match, the

search in the $SDH i ndex is continued, searching for a next natching hash.

When a precise match is found, the security_id coresponding to the security
descriptor in the $SDS attribute is read fromthe found $SDH i ndex entry and
is stored in the $STANDARD | NFORMATI ON attribute of the file/directory to
whi ch the security descriptor is being applied. The $STANDARD | NFORVATI ON
attribute is present in all base nft records (i.e. in all files and
directories).

If a match is not found, the security descriptor is assigned a new uni que
security_id and is added to the $SDS data attribute. Then, entries
referencing the this security descriptor in the $SDS data attribute are
added to the $SDH and $SI| indexes.

Note: Entries are never deleted fromFILE $Secure, even if nothing
references an entry any nore.

The $SDS data stream contains the security descriptors, aligned on 16-byte
boundari es, sorted by security id in a B+ tree. Security descriptors cannot

cross 256kib boundaries (this restriction is inposed by the Wndows cache

manager) .
Al so,

Each security descriptor is contained in a SDS ENTRY structure.
each security descriptor is stored twice in the $SDS streamwith a

fixed offset of 0x40000 bytes (256kib, the Wndows cache nanager's max size)

bet ween t hem

if a SDS_ENTRY specifies an offset of 0x51d0, then the

the first copy of the security descriptor will be at offset 0x51d0 in the
$SDS data stream and the second copy will be at offset 0x451dO0.

$SI |
$SDH i ndex.

The collation type is COLLATI ON_NTOFS_ULONG
The collation rule is

COLLATI ON_NTOFS_SECURI TY_HASH.

7. Attribute - $VOLUME_NAME (0x60)

7.1. Overview

This attribute simply contains the name of the volume.

As defined in $AttrDef, this attribute has a minimum size of 2 bytes and a maximum of 256 bytes. This
equates to a maximum volume name length of 127 Unicode characters.

7.2. Layout of the Attribute

Table 2.19. Layout of the 3VvOLUME_NAME (0x60) attribute

Offset

Size

Description

Standard Attribute Header

22

NTFS Attributes

Offset Size Description
0x00 Unicode name
7.3. Notes

The Volume Name is not terminated with a Unicode NULL. Its name's length is the size of the attribute
as stored in the header.

A Volume's Serial Number is stored in $Boot.

8. Attribute - $VOLUME_INFORMATION (0x70)

8.1. Overview

Indicates the version and the state of the volume.

As defined in $AttrDef, this attribute has a minimum and a maximum size of 12 bytes.

8.2. Layout of the Attribute

Table 2.20. Layout of the SVOLUME_INFORMATION (0x70) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 8 Always zero?

0x08 1 Mgagjor version number

0x09 1 Minor version number

O0x0A 2 Flags

0x0C 4 Always zero?
8.2.1. Flags

Table 2.21. Volume Flags

Value Description

0x0001 Dirty

0x0002 Resize LogFile

0x0004 Upgrade on Mount

0x0008 Mounted on NT4

0x0010 Delete USN underway

0x0020 Repair Object Ids

0x8000 Modified by chkdsk

23

NTFS Attributes

8.3. Notes
8.3.1. Dirty Flag

When the Dirty Flag is set, Windows NT must perform the chkdsk/F command on the volume when it
next boots.

8.3.2. Version numbers

Table 2.22. Volume Version Numbers

Operating System Version
Windows NT 1.2
Windows 2000 3.0
Windows XP 31

8.3.3. Other Information

A Volume's Serial Number is stored in $Boot.

9. Attribute - $DATA (0x80)

9.1. Overview

This Attribute contains the file's data. A fil€'s size is the size of its unnamed Data Stream.

Asdefined in $AttrDef, this attribute has a no minimum or maximum size.

9.2. Layout of the Attribute

Table 2.23. Layout of the $DATA (0x80) attribute

Offset Size Description
~ ~ Standard Attribute Header
0x00 Any data

9.3. Notes

9.3.1. Common Data Stream Used By Windows

e [Unnamed]
e {4cBccl55-6¢le-11d1-8e41-00c04fb9386d}

e ~EDocumentSummarylnformation

24

NTFS Attributes

e /ESehiesnrMkudrfcolaamtykdDa
e AESummarylnformation

» $MountMgrDatabase

+ $Bad

+ $SDS

e %

e $Max

9.3.2. Other Information

Usually, adirectory has no Data Attribute, and the Data Attribute of afile has no name.

nmust have (at |east enpty) unnaned data attr

NTFS has an advantage: as you can have several data attributes for afile, you can easily implement HFS
whose files are made of two parts (also called forks in the HFS terminology): a resource part and a data
part. For the data part, you use default unnamed data attribute, and for the resource part, you use a data
attribute named e.g. 'resource.

10. Attribute - $SINDEX_ROOT (0x90)

10.1. Overview

This is the root node of the B+ tree that implements an index (e.g. a directory). Thisfile attribute is al-
ways resident.

Al ways resident.

10.2. Layout of the Attribute

link up bel ow

$INDEX_ROQOT

e Standard Attribute Header

* |ndex Root

Index Header

Index Entry

25

NTFS Attributes

* Index Entry

10.2.1. Index Root

Table 2.24. Layout of the SINDEX_ROOT (0x90) attribute: an Index Root

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Attribute Type

0x04 4 Collation Rule

0x08 4 Size of Index Allocation Entry (bytes)
0x0C 1 Clusters per Index Record

0x0D 3 Padding (Align to 8 bytes)

10.2.2. Index Header

Table 2.25. Layout of the SINDEX_ROOT (0x90) attribute: an Index Header

Offset Size Description

0x00 4 Offset to first Index Entry

0x04 4 Total size of the Index Entries

0x08 4 Allocated size of the Index Entries

0x0C 1 Flags

0x0D 3 Padding (align to 8 bytes)
10.2.3. Flags

Table 2.26. Index flags

Flag Description
0x00 Small Index (fitsin Index Root)
0x01 Large index (Index Allocation needed)

silly to have a flag of 0x00, renove

The large index flag indicates whether the file attributes index allocation and bitmap are present (when
the index is small enough to be stored completely in the root node, these two file attributes are missing).

10.3. Notes

26

NTFS Attributes

10.3.1. Size

Asdefined in $AttrDef, this attribute has a no minimum or maximum size.

10.3.2. Sequence of index entries

Thisis a sequence of index entries that has a variable length. The sequence is terminated with a special

index entry whose last entry flag is set.

This is the header for indexes, describing the | NDEX ENTRY records, which
foll ow the | NDEX HEADER Together the index header and the index entries
make up a conpl ete index.

This is followed by a sequence of index entries (I NDEX ENTRY structures)
as described by the index header.

VWen a directory is small enough to fit inside the index root then this

is the only attribute describing the directory. When the directory is too
large to fit in the index root, on the other hand, two aditional attributes
are present: an index allocation attribute, containing sub-nodes of the B+
directory tree (see below), and a bitmap attribute, describing which virtual
cluster nunmbers (vcns) in the index allocation attribute are in use by an

i ndex bl ock.

NOTE: The root directory (FILE $root) contains an entry for itself.

struct {
ATTR_TYPES type;
Type of the indexed attribute. |s $FILENAVE for directories, zero
for view i ndexes. No other val ues all owed.
COLLATI ON_RULES col I ation_rul e; Collation rule used to sort the
index entries. If type is $FILENAVE, this nmust be COLLATI ON_FI LENAME.

__u32 bytes_per_index_bl ock;
Byte size of each index block (in the index allocation attribute).

__u8 clusters_per_index_bl ock;
Cluster size of each index block (in the index allocation attribute),

}

an index block is >= than a cluster,

the size (like how the encoding of the nft
record size found in the boot sector work).

I NDEX_ROOT;

10.4. List of Common Indexes

Table 2.27. Common I ndexes

Name Index Of Used By
$130 Filenames Directories
$SDH Security Descriptors $Secure
$Sl| Security Ids $Secure
$0 Object Ids $ObjId

$0 Owner Ids $Quota
$Q Quotas $Quota

27

otherwise this will be the |og of
record size and the index

Has to be a power of 2.

NTFS Attributes

Name

Index Of

Used By

$R

Reparse Points

$Reparse

whi ch el ements are shared between i ndexes?

not rel evant for

i ndex root

11. Attribute - SINDEX_ALLOCATION (0xA0)

11.1. Overview

This is the basic component of an index (e.g. a directory). This is the storage location for all sub-nodes
of the B+ tree that implements an index (e.g. adirectory). Thisfile attribute is always non-resident.

Asdefined in $AttrDef, this attribute has a no minimum or maximum size.

this attribute is never resident

11.2. Layout of the Attribute

It issimply a sequence of al index buffers that belong to the index.

- woul d use index root instead

Table 2.28. Layout of the SINDEX_ALLOCATION (0xAOQ) attribute

Offset Size Description
~ ~ Standard Attribute Header
0x00 Dataruns

11.2.1. Index Entry

split into two tables, at |east

Table 2.29. Layout of a data entry in the $INDEX_ALLOCATION (OxAQ)

attribute

Offset Size Description

~ ~ Standard Attribute Header
The next field is only valid when the last entry flag is not set

0x00 8 File reference

0x08 2 L = Length of the index entry
OxO0A 2

M = Length of the stream

28

NTFS Attributes

Offset Size Description

0x0C 1 Flags

The next field is only present when the last entry flag is not set

0x10 M | Stream

The next field is only present when the sub-node flag is set

L-8 8 [VCN of the sub-node in the index all ocation attribute
11.2.2. Flags

Table 2.30. Data entry flags

Flag

Description

0x01

Index entry points to a sub-node

0x02

Last index entry in the node

The last entry flag is used to indicate the end of a sequence of index entries. Although it does not repres-
ent avalid file, it can point to a sub-node.

11.3. Notes
11.3.1. Length of the stream

A copy of the field at offset 10 in the header part of the resident file attribute indexed by the index entry.
But why the hell haven't these 2 fields the same size?

11.3.2. Stream

A copy of the stream of the resident file attribute indexed by the index entry (e.g. for adirectory, thefile
name attribute).

Al ways non-resident (doesn't nake sense to be resident anyway!).

This is an array of index blocks. Each index block starts with an
| NDEX BLOCK structure containing an i ndex header, followed by a sequence of
i ndex entries (I NDEX ENTRY structures), as described by the | NDEX HEADER.

When creating the index block, we place the update sequence array at this
offset, i.e. before we start with the index entries. This al so nakes sense,
otherwise we could run into problens with the update sequence array
containing initself the last two bytes of a sector which would nean that
multi sector transfer protection wouldn't work. As you can't protect data
by overwriting it since you then can't get it back...

VWhen readi ng use the data fromthe ntfs record header.

12. Attribute - $BITMAP (0xBO)

12.1. Overview

29

NTFS Attributes

Thisfile attribute is a sequence of bits, each of which represents the status of an entity.

Asdefined in $AttrDef, this attribute has a no minimum or maximum size.

12.2. Layout of the Attribute

This attribute is currently used in two places: indexes (e.g. directories), SMFT. N.B. The index entries
and the FILE records also have flags in them to show if they arein use or not.

In an index, the bit field shows which index entries are in use. Each bit represents one VCN of the index
allocation.

In the SMFT, the bit field shows which FILE records are in use.

Table 2.31. Layout of the $BITMAP (0xBO0) attribute

Offset Size Description
~ ~ Standard Attribute Header
0x00 Bit field

13. Attribute - SREPARSE_POINT (0xCO)
13.1. Overview

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 16384 bytes.

13.2. Layout of the Attribute (Microsoft Reparse Point)

Table 2.32. Layout of the $REPARSE_POINT (0xCO) attribute (Microsoft

Repar se Paint)

Offset Size Description

~ ~ Standard Attribute Header
0x00 4 Reparse Type (and Flags)
0x04 2 Reparse Data Length
0x06 2 Padding (align to 8 bytes)
0x08 \% Reparse Data (a)

13.3. Layout of the Attribute (Third-Party Reparse Point)

Table 2.33. Layout of the $SREPARSE_POINT (0xCO0) attribute (Third-Party
Repar se Paint)

Offset Size Description
~ ~ Standard Attribute Header

30

NTFS Attributes

Offset Size Description

0x00 4 Reparse Type (and Flags)
0x04 2 Reparse Data Length
0x06 2 Padding (align to 8 bytes)
0x08 16 Reparse GUID

0x18 \% Reparse Data (a)

(a) The structure of the Reparse Data depends on the Reparse Type. There are
t hree defined Reparse Data (Syniinks, Vol Links and RSS) + the Generic Reparse.

13.3.1. Symbolic Link Reparse Data

Table 2.34. Symbolic Link Repar se Data

Offset Size Description
0x00 2 Substitute Name Offset
0x02 2 Substitute Name Length
0x04 2 Print Name Offset
0x08 2 Print Name Length
0x10 Y, Path Buffer

13.3.2. Volume Link Reparse Data
Table 2.35. Volume Link Reparse Data
Offset Size Description
0x00 2 Substitute Name Offset
0x02 2 Substitute Name Length
0x04 2 Print Name Offset
0x08 2 Print Name Length
0x10 \% Path Buffer

13.3.3. Reparse Tag Flags

These are just the predefined reparse flags

Table 2.36. Reparse Tag Flags

Flag Description
0x20000000 Isaias
0x40000000 Ishigh latency
0x80000000 Is Microsoft

31

NTFS Attributes

Flag Description
0x68000005 NSS
0x68000006 NSS recover
0x68000007 SIS
0x68000008 DFS
0x88000003 Mount point
0xA 8000004 HSM
OxE8000000 Symbolic link
13.4. Notes

13.4.1. Other Information

The reparse point tag defines the type of the reparse point. It also
i ncl udes several flags, which further describe the reparse point.

The reparse point tag is an unsigned 32-bit value divided in three parts:

1. The least significant
the reparse point.

2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use.

3. The nost significant three bits are flags describing the reparse point.
They are defined as foll ows:

16 bits (i.e. bits 0 to 15) specifiy the type of

bit 29: Nane surrogate bit. If set, the filename is an alias for
anot her object in the system

bit 30: High-latecny bit. If set, accessing the first byte of data will
be slow. (E.g. the data is stored on a tape drive.)

bit 31: Mcrosoft bit. If set, the tag is owed by Mcrosoft. User

defined tags have to use zero here.
The system file FILE $Extend/ $Reparse contains an i ndex naned $R listing
all reparse points on the volune. The index entry keys are as defined
bel ow. Note, that there is no index data associated with the index entries.
The index entries are sorted by the index key file_id. The collation rule is

CCOLLATI ON_NTOFS_ULONGS. FI XME: Verify whether the reparse_tag is not the
primary key / is not a key at all. (AlA)

14. Attribute - $EA_INFORMATION (0xDO)

14.1. Overview

Used to implement under NTFS the HPFS extended attributes used by the information subsystem of OS/
2 and OS/2 clients of Windows NT servers. This file attribute may be non-resident because its stream is
likely to grow.

Asdefined in $AttrDef, this attribute has a minimum and a maximum size of 8 bytes.

14.2. Layout of the Attribute

32

NTFS Attributes

Table 2.37. Layout of the SEA_INFORMATION (0xDO0) attribute

Offset Size Description
~ ~ Standard Attribute Header

0x00 2 Size of the packed Extended Attributes
0x02 2 Number of Extended Attributes which have NEED_EA set
0x04 4 Size of the unpacked Extended Attributes

15. Attribute - $EA (OxEO)

15.1. Overview

Used to implement the HPFS extended attribute under NTFS. This file attribute may be non-resident be-
causeits stream is likely to grow.

Asdefined in $AttrDef, this attribute has a no minimum size but a maximum of 65536 bytes.

15.2. Layout of the Attribute

The Extended Attribute is a collection of name, value pairs.

Table 2.38. Layout of the $EA (OxEOQ) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Offset to next Extended Attribute
0x04 1 Flags

0x05 1 Name Length (N)

0x06 2 Value Length (V)

0x08 N Name

N+0x08 \% Value

Conversely, the Offset to next EA isthe size of thisEA.

15.2.1. Flags

Table 2.39. EA flags

Value Description
0x80 Need EA
15.3. Notes

33

NTFS Attributes

15.3.1. Other Information

What is the role and the layout of the stream of this file attribute? It could be valuable to have a look at
HPFS documentation.

15.3.2. Questions

Isit true that the EA name is not unicode?

16. Attribute - SLOGGED_UTILITY_STREAM
(0x100)

16.1. Overview

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 65536 bytes.

16.2. Layout of the Attribute

As an attribute it's no different to a named data attribute
Contents depend on the nane of the $DATA stream

Table 2.40. Layout of the SLOGGED_UTILITY_STREAM (0x100) attribute

Offset Size Description
~ ~ Standard Attribute Header
0x00 Any data
16.3. Notes
16.3.1. Other Information
Information needed

Operations on this attribute are logged to the journal ($LogFile) Iike
nor mal netadata changes.

Used by the Encrypting File System (EFS). Al encrypted files have this
attribute with the nane $EFS.

Can be anything the creator chooses.
EFS uses it as foll ows:

FI XME: Type this info, verifying it along the way. (AlA)

Chapter 3. NTFS Files

1. Overview

Everything on an NTFS volume is afile. There are two categories. Metadata and Normal. The Metadata
files contain information about the volume and the Normal files contain your data.

1.1. Layout of the Volume

Below isatable of filesfound on aWin2K volume (Key).

Table 3.1. Layout of fileson the Volume

Inode |Filename oS Description
0 SMFT Master File Table - An index of every file
1 SMFTMirr A backup copy of the first 4 records of the MFT
2 $LogFile Transactional logging file
3 $Volume Serial number, creation time, dirty flag
4 SAttrDef Attribute definitions
5 . (dot) Root directory of the disk
6 $Bitmap Contains volume's cluster map (in-use vs. free)
7 $Boot Boot record of the volume
8 $BadClus Lists bad clusters on the volume
9 $Quota NT Quotainformation
9 $Secure 2K Security descriptors used by the volume
10 $UpCase Table of uppercase characters used for collating
11 $Extend 2K A directory: $Objld, $Quota, $Reparse, $Usndrnl
12-15 |<Unused> Marked as in use but empty
16-23 |<Unused> Marked as unused
Any [$0bjld 2K Unique Ids given to every file
Any [$Quota 2K Quotainformation
Any |$Reparse 2K Reparse point information
Any |$UsnJml 2K Journalling of Encryption
>24 A_File Anordinary file
>24 A_Dir An ordinary directory
1.2. Notes

1.2.1. Unused Inodes

On a freshly formatted volume, inodes 0xOB to OxOF are marked as in use, but empty. Inodes 0x10 to
0x17 are marked as free and not used. This doesn't change until the volume is under alot of stress.

35

NTFS Files

When the SMFT becomes very fragmented it won't fit into one FILE Record and an extension record is
needed. If a new record was simply allocated at the end of the SMFT then we encounter a problem. The
$DATA Attribute describing the location of the new record isin the new record.

The new records are therefore allocated from inode OxOF, onwards. The SMFT is always a minimum of
16 FILE Records long, therefore always exists. After inodes OxOF to 0x17 are used up, higher, unre-
served, inodes are used.

This effect may not be limited to the $MFT, but more evidence is needed.

1.2.2. Other Information

For some reason $Objld, $Quota, $Reparse and $Usndrnl don't have inode numbers below 24, like the
rest of the Metadatafiles.

Also, the sequence number for each of the system files is always equal to their mft record number and it
is never modified.

2. NTFS Files: $MFT (0)

2.1. Overview

In NTFS, everything on disk is afile. Even the metadatais stored as a set of files.

The Master File Table (MFT) isan index of every file on the volume. For each file, the MFT keeps a set
of records called attributes and each attribute stores a different type of information.

2.2. SMFT Attributes

Table3.2. SMFT Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME SMFT
0x80 $DATA [Unnamed]
0xBO $BITMAP [Unnamed]

2.3. Layout of the File

2.3.1. Unnamed Data Stream
The description of each fileis packed into FILE records.
If one record is not large enough (thisis unusua), then an SATTRIBUTE_LIST attribute is needed.

Thefirst 24 FILE records are reserved for the system files. For afull list see the Files page.

Table 3.3. Samplerecords from the beginning of SMFT

36

NTFS Files

Inode |Filename Description
0 SMFT Master File Table - Anindex of every file
1 SMFTMirr A backup copy of thefirst 4 records of the MFT
2 $LogFile Transactional logging file
3 $Volume Serial number, creation time, dirty flag
2.4. Notes

2.4.1. MFT Zone

To prevent the MFT becoming fragmented, Windows maintains a buffer around it. No new files will be
created in this buffer region until the other disk space is used up. The buffer size is configurable and can
be 12.5%, 25%, 37.5% or 50% of the disk. Each time the rest of the disk becomes full, the buffer size is
halved.

2.4.2. Other Information

The MFT is self-referencing.

The MFT has some space reserved for future expansion. MFT records 12 - 15 are marked as in use, but
are empty. MFT records 16 - 23 are marked as not in use, however they are never used.

Under Windows, the MFT cannot shrink whilst the system is running.

3. NTFS Files: SMFTMirr (1)

3.1. Overview

Thisisasystem file that duplicates at least the first four FILE records of the MFT for recovery purposes.
If the cluster size of the volume is less than or equal to four times the mft record size, i.e. usually the
cluster size is less than or equal to 4096 bytes, then the first four MFT records are stored in the
SMFETMirr.

If the cluster size is greater than four times the mft record size, then the size of SMFTMirr is one cluster
and as many MFT records are stored in it asfit inside a cluster.

For example given an MFT record size of 1024 bytes and a cluster size of 8192 bytes the SMFTMirr
would be 8192 bytes long and it would contain the first eight FILE records of the MFT.

3.2. SMFTMirr Attributes

Table3.4. SMFTMirr Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME SMFTMirr
0x80 $DATA [Unnamed]

37

NTFS Files

3.3. Layout of the File

3.3.1. Unnamed Data Stream

A copy of at least the first four FILE records of the SMFT.

Table 3.5. Layout of SMFTMirr

Inode Filename Description

0 SMFT Master File Table - An index of every file

1 SMFTMirr A backup copy of thefirst 4 records of the MFT

2 $Logfile Transactional logging file

3 $Volume Serial number, creation time, dirty flag

4 If present, further FILE records from the MFT (see SMFT)

4. NTFS Files: $LogFile (2)

4.1. Overview

4.2. $LogFile Attributes

Table 3.6. $LogFile Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $LogFile
0x80 $DATA [Unnamed]

4.3. Layout of the File

4.3.1. Unnamed Data Stream

Littleis known about the LogFil€'s structure.

4.4. Notes
4.4.1. Other Information

Thelogging area consists of a sequence of 4KB log records.
Each logrecord is structured as follows:

of fset (I engt h) contents

0(4

Magi ¢ nunber ' RCRD
1E(12) Fi xup

38

NTFS Files

The logrecord supposedly contains a sequence of variable sized records. The structuring of those is not
clear. File 2 is $LogFile, which contains transaction records to guarantee data integrity in case of a sys-
tem failure. As pp. 37 describe, it consists of 2 copies of the restart area, and the 'infinite' logging area.

When you want to write afile on a storage unit, you have to update the file itself plus some tables of the
filesystem (say as an example the date of thefile). At this point, you need a transaction made of 2 opera-
tions (update the file itself, update the date of the file).

If the transaction is realized, you are sure that your file is written on the storage unit, and that the filesys-
tem has been left in adefined state.

If the transaction is not realized (in case of e.g. power failure, or system failure in genera), the filesys-
tem isin an undefined state. The only way for you to put it back in a defined (and sane) state (this opera
tion is called aroll-back) isto log in a special file, the log file, which operations of the transaction have
been successfully completed.

At the first access to the disk after a system failure, the system read the log file and rolls back all the op-

erations to the beginning of the last transaction.

» When the system writes to the log file, the operation must be atomic and immediate.

* You can put back your volume in sane state in a short time which is not related to the size of your
disk but only to the complexity of the transaction that failed. Note: This operation is not performed
by the Windows NT chkdsk utility, but by the system: this normal and reliable operation is a feature
of NTFS.

» If your hardware isreliable, you are sure that you always have access to al the files of your volume,
because it is consistent. But you can't restore eventual data losses.

Log file organization:

Two restart areas present in the first two pages (restart pages). When the volume is unmounted they
should be identical.

These are followed by log records organized in pages headed by a record header going up to log file
size.

Not all pages contain log records when a volume is first formatted, but as the volume ages, all records
will be used.

When the log file fills up, the records at the beginning are purged (by modifying the oldest_|sn to a high-
er value presumably) and writing begins at the beginning of the file. Effectively, thelog fileis viewed as
acircular entity.

Log file restart page header (begins the restart area):

struct ({
NTFS_RECORD; The magic is "RSTR'.
__u64 chkdsk_I sn; The check disk log file sequence
nunber for this restart page.
Only used when the magic is changed
to "CHKD'. =0
__u32 system page_si ze; Byte size of system pages, has to be

>= 512 and a power of 2. Use this
to calculate the required size of the

39

NTFS Files

usa and add this to the
ntfs.usa_offset value. Then verify
that the result is less than the

val ue of the restart_offset. = 0x1000
__u32 | og_page_si ze; Byte size of log file records,

has to be >= 512 and a power of 2.

= 0x1000
__ulé restart_offset; Byte offset fromthe start of the

record to the restart record.
Val ue has to be aligned to 8-byte
boundary. = 0x30

__s16 mnor_ver; Log file mnor version. Only check if
major version is 1. (=1 but >=1 is
treated the sane and <=0 is al so
ok)

__ulé mmjor_ver; Log file major version (=1 but =0 is
ok)

} RESTART_PAGE_HEADER

Log filerestart area record:

The offset of this record is found by adding the offset of the RESTART_PAGE_HEADER to the re-
start_offset value found in it.

struct ({
__u64 current _|sn; Log file record. = 0x700000, 0x700808
__ulé log_clients; Nunber of log client records
following the restart_area. =1
_ul6 client_free_list; How many clients are free(?). If !=
oxffff, check that log clients >
client_free_ list. = Oxffff

ulé client_in_use_list; How nany clients are in use(?).
If 1= Oxffff check that log clients

> client _in_use list. =0
__ulée flags; ?2?? 0

__u32 seq_nunber _bits; ?2?? 0x2c or 0x2d
__ul6 restart_area length;Length of the restart area.
Fol I owi ng checks required if version
mat ches. Ot herw se, skip them
restart_offset + restart_area_length
has to be <It;= system page_si ze.
Al so, restart_area length has to be
>= client_array_offset +
(log _clients * 0xa0). = 0xdO
ulé client _array offset;Offset fromthe start of this record
to the first client record if versions
are matched. The offset is otherw se
assuned to be (sizeof (RESTART _AREA) +
7) & ~7, i.e. rounded up to first
8- byte boundary. Either way, the
offset to the client array has to be
aligned to an 8-byte boundary. Al so,
restart _offset + offset to the client
array have to be <It;= 510. Also,
the offset to the client array +
(log_clients * 0Oxa0) have to be
<l t;= SystenPageSi ze. = 0x30
_u64d file_size; Byte size of the log file. If the
restart_offset + the offset of the
file size are > 510 then corruption
has occured. This is the very first
check when starting with the

40

NTFS Files

restart _area as if it fails it means
that some of the above values will be
corrupted by the nulti sector transfer
protection! If the structure is
deprotected then these checks are
futile of course.
Calculate the file_size bits and check
that seq_nunber bits == 0x43 -
file_size bits. = 0x400000
__u32 last_|Isn_data_length;??? = 0, 0x40
__ulé record_Il ength; Byte size of this record. If the
versi on matches then check that the
val ue of record_length is a multiple
of 8, i.e. (record_length + 7) &
~7 == record_l ength. = 0x30
__ulé | og_page_data_offset; ??? = 0x40
} TRESTART_AREA;

Log file client record:
Starts at 0x58 even though AFAIU the above it should start at 0x60. Something fishy is going on. /-:

struct ({
__u6b4 ol dest _I sn; O dest log file sequence nunber for
this client record. = 0xbd16951d
_ub4 client restart _Isn; 2?7 0x700000, 0x700827, 0x700d07

__ule prev_client; ??? = 0x808, 0xd07, 0Oxd5d

__ul6 next_client; ??? = 0x70

__ulé seq_nhumber; ??? = 0, 4 size uncertain, Regis
calls this "volunme clear flag" and

gives a size of one byte.
__ulé client_nane; ??? = enpty string??? size uncertain
} RESTART_CLI ENT;

NOTE: Above client record is followed by Oxffffffff probably to indicate the end of the restart area.
Then there are 8 bytes = 0, then one __u32 = 8, followed by the Unicode string "NTFS" and then zeroes
till the end of the page. I's thisimportant at all?

Log page record page header:
Each log page begins with this header and is followed by several LOG_RECORD structures.

struct {
NTFS_ RECORD; The magic is "RCRD'.
uni on {
__ub4 last_Isn
_u32 file offset;
copy;
_u32 flags;
__ul6 page_count;
__ulé page_position;

uni on {
struct {
__u64 next_record_of fset;
__u6b4 last_end_|sn;
} packed,;
header ;

} RECORD_PAGE_HEADER;

41

NTFS Files

Possible flags for log records:

enum {
LOG RECORD MULTI _PAGE = 1, ?2??
LOG RECORD_SI ZE_PLACE_ HOLDER = Oxffff,
This has nothing to do with the | og record.
It is only so gcc knows to nmake the flags 16-bit.
} LOG _RECORD FLAGS;

Log record header:

struct {
ué4 this_|sn;
~u6b4 client previous_lsn;
~_u64 client_undo_next _Isn;
—_u32 client_data_l ength;
struct {
__ulé seq_number;
__ulé client_index;
} client_id;
u32 record_type;
u32 transaction_id;
LOG RECORD FLAGS flags
ul6é reserved_or _alignnment[3];
+ Now are at ofs Ox30 into struct. *
ulé redo_operation;
ulé undo_operation
__ulé redo_offset;
__ulé redo_l ength;
ulé undo_of fset;
__ulé undo_Il engt h;
__ulé target _attribute;
__ulé lcns_to follow, Nunber of lcn_list entries
following this entry.

__ul6 record offset;
ulé attribute offset;
u32 alignment _or_reserved;
u32 target_vcn;
__u32 alignnent_or_reservedl;
struct { Only present if lcns_to followis not O.
_u32 lcn;
~_u32 alignnment_or_reserved;
} len_list[O];
} LOG_RECORD;

The restart area (supposedly) has a pointer into the log area, such as the first and last log records written
and the last checkpoint record written. If the restart area is screwed, recovery will be very hard - there-
fore you have two copies of the restart areas.

Individual log records are identified by logical sequence numbers (LSNS). The log area wraps around,
but the LSNs don't (at least not anytime soon), so they are used for identifying log records instead of the
offset in thelog file.

Any modification of meta data (such as updating the time stamp that the file system was opened) will
result in log file actions, which in turn result in restart area changes. It might well be that the dirty bit is
implicit rather than explicit: The file system is clean if the last log record says that there are no pending
transactions.

42

NTFS Files

5. NTFS Files: $Volume (3)

5.1. Overview

Thisis a system file containing information about the volume.

5.2. $Volume Attributes

Table 3.7. $Volume Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Volume
0x50 $SECURITY_DESCRIPTOR

0x60 $VOLUME_NAME

0x70 $VOLUME_INFORMATION

0x80 $DATA [Unnamed]

5.3. Layout of the File

5.3.1. Unnamed Data Stream

The $DATA attribute has zero length.

5.4. Notes
5.4.1. Other Information

The Serial Number of avolumeis stored in $Boot.

This is the only Metadata File that uses the $VOLUME_NAME and $VOLUME_INFORMATION file
attributes.

6. NTFS Files: $AttrDef (4)

6.1. Overview
Thisis asystem file containing information about all the file attributes usable in a volume.

Attribute end nmarker OxFFFFFFFF

6.2. $SAttrDef Attributes

Table 3.8. $AttrDef Attributes

43

NTFS Files

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_ NAME $AttrDef
0x50 $SECURITY_DESCRIPTOR

0x80 $DATA [Unnamed]

6.3. Layout of the File

6.3.1. Unnamed Data Stream

Its layout is a sequence of records. Each record defines one file attribute, and its layout is:

Table 3.9. Layout of $AttrDef

Offset Size Description
0x00 128 Label in Unicode
0x80 4 Type

0x84 4 Display rule
0x88 4 Callation rule
0x8C 4 Flags

0x90 8 Minimum size
0x98 8 Maximum size

6.3.2. Display Rule

At the moment thisis always zero

6.3.3. Collation Rule

At the moment this is always zero, but the possible values are:

Table 3.10. $AttrDef Collation Rules

Flag Description

0x00 Binary

0x01 Filename

0x02 Unicode String

0x10 Unsigned Long

0x11 SID

0x12 Security Hash

0x13 Multiple Unsigned Longs
6.3.4. Flags

NTFS Files

We've only witnessed three flags: 0x02, 0x40 and 0x80. It seems that 0x40 and 0x80 are never seen to-
gether. Therefore, the guessis that:

Table 3.11. $AttrDef Flags

Flag Description

0x02 Indexed

0x40 Resident (always)

0x80 Non-Resident (allowed to be)
6.4. Notes

» $PROPERTY_SET existed, briefly, in NTFS v3.0. It was intended to support Native Structure Stor-
age (NSS).

» obsolete $YOLUME_VERSION and $SYMBOLIC_LINK appeared in WinNT but weren't used.
They don't appear in either Win2K or WinXP.

6.4.1. Other Information

It should be possible to add user-defined attributes to thisfile.
$AttrDef has big WAS it? 36K ?
yep in nt4 = 36K mostly blank

now 2560 = 15attrs + 1 blank (2.5K)
6.5. Examples
6.5.1. Windows NT Example

Table 3.12. $AttrDef example from Windows NT

Type Name Flags IRN Min Size |Max Size
0x10 $STANDARD_INFORMATION 0x40 R 0x30 0x30
0x20 $ATTRIBUTE_LIST 0x80 N - -

0x30 $FILE_NAME 0x42 IR Ox44 0x242
0x40 $VOLUME_VERSION 0x40 R 0x8 0x8
0x50 $SECURITY_DESCRIPTOR 0x80 N - -

0x60 $VOLUME_NAME 0x40 R 0x2 0x100
0x70 $VOLUME_INFORMATION 0x40 R 0xC 0xC
0x80 $DATA 0x00 - -

0x90 $INDEX_ROOT 0x40 R - -
OxAO0 $INDEX_ALLOCATION 0x80 N - -
0xBO $BITMAP 0x80 N - -

45

NTFS Files

Type Name Flags IRN Min Size |Max Size
0xCO0 $SYMBOLIC_LINK 0x80 N - -

0xDO $EA_INFORMATION 0x40 R 0x8 0x8

OxEQ $EA 0x00 - 0x10000

6.5.2. Windows 2000 and Windows XP Example

Table 3.13. $Attr Def example from Windows 2000/XP

Type Name Flags IRN Min Size |Max Size
0x10 $STANDARD_INFORMATION 0x40 R 0x30 0x48
0x20 $ATTRIBUTE_LIST 0x80 N - -

0x30 $FILE_NAME 0x42 IR 0x44 0x242
0x40 $OBJECT_ID 0x40 R - 0x100
0x50 $SECURITY_DESCRIPTOR 0x80 N - -

0x60 $VOLUME_NAME 0x40 R 0x2 0x100
0x70 $VOLUME_INFORMATION 0x40 R 0xC oxC
0x80 $DATA 0x00 - -

0x90 $INDEX_ROOT 0x40 R - -

OxAO $INDEX_ALLOCATION 0x80 N - -

0xBO $BITMAP 0x80 N - -

0xCO $REPARSE_POINT 0x80 N - 0x4000
0xDO $EA_ INFORMATION 0x40 R 0x8 0x8
OxEOQ $EA 0x00 - 0x10000
OxFO $PROPERTY_SET ? ? ? ?

0x100 $LOGGED_UTILITY_STREAM 0x80 N - 0x10000

7. NTFS Files: . (Root Directory) (5)

7.1. Overview

The Root Directory of an NTFS, called . (dot) is an ordinary directory. If the volume has Reparse Points
then the directory will have a Named Data Stream called $MountMgrDatabase. See the Directory Page
for more information.

7.2. Dot (.) Attributes

Table 3.14. Dot (.) Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME

0x50 $SECURITY_DESCRIPTOR

46

NTFS Files

Type Description Name

0x80 $DATA $MountMgrDatabase
0x90 $INDEX_ROOT $130

OxAO $INDEX_ALLOCATION $I30

0xBO $BITMAP $130

7.3. Layout of the File
7.3.1. $MountMgrDatabase Data Stream

This Data Stream only exists when there are Reparse Points on the Volume. It consists of repeating
groups of

Table 3.15. Layout of Dot (.)

Offset Size Description
0x00 4 Size of entry
0x04 4 Flags? (bitfield?)
0x08 2 Offset to UNC Path
Ox0A 2 Size of UNC Path
0x0C 2 Offset to data
OxOE 2 Size of data

7.4. Notes

7.4.1. Other Information

See the Directory Page for more information.

8. NTFS Files: $Bitmap (6)

8.1. Overview

Thisfilelistswhich clusters are in use. Each bit in thisfile represents one LCN.

8.2. $Bitmap Attributes

Table 3.16. $Bitmap Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Bitmap
0x80 $DATA [Unnamed]

47

NTFS Files

8.3. Layout of the File

8.3.1. Unnamed Data Stream

The lowest bit represents the lowest numbered LCN. Thus:

Table 3.17. Layout of $Bitmap

Bit LCN
00000001) 0
00000010) 1
00000100) 2
etc
8.4. Notes

8.4.1. MFT Zone

To prevent the MFT becoming fragmented, Windows maintains a buffer around it. No new files will be
created in this buffer region until the other disk space is used up.

The buffer size is configurable and can be 12.5%, 25%, 37.5% or 50% of the disk. Each time the rest of
the disk becomes full, the buffer sizeis halved.

8.4.2. Other Information

The size of this file is always a multiple of 8 bytes (64 clusters). Because of this rounding-up, the
$Bitmap will represent slightly more clusters than the disk has. These bit are always set to 1.

The backup copy of the boot sector liesin this no-mans-land the cluster is hence marked asin use.

In theory, on very small volume, this attribute could be resident. In practice, Windows crashes.

9. NTFS Files: $Boot (7)

9.1. Overview

Thisisthe system file that allows the system to boot.
This metadata file points at the boot sector of the volume.
It contains information about the size of the volume, clusters and the MFT.

It isthe only file that cannot be relocated.

9.2. $Boot Attributes

Table 3.18. $Boot Attributes

48

NTFS Files

Type Description Name
0x10 $STANDARD_INFORMATION
0x30 $FILE_ NAME $Boot
0x50 $SECURITY_DESCRIPTOR
0x80 $DATA [Unnamed]
9.3. Layout of the File
9.3.1. Unnamed Data Stream
Table 3.19. Layout of $Boot
Offset Size Description
0x0000 3 Jump to the boot loader routine
0x0003 8 System Id: "NTFS"
0x000B 2 Bytes per sector
0x000D 1 Sectors per cluster
0x000E 7 Unused
0x0015 1 Media descriptor (a)
0x0016 2 Unused
0x0018 2 Sectors per track
0x001A 2 Number of heads
0x001C 8 Unused
0x0024 4 Usually 80 00 80 00 (b)
0x0028 8 Number of sectorsin the volume
0x0030 8 LCN of VCN 0 of the SMFT
0x0038 8 LCN of VCN 0 of the SMFTMirr
0x0040 4 Clusters per MFT Record (c)
0x0044 4 Clusters per Index Record (c)
0x0048 8 Volume serial number
0x0200 Windows NT Loader

9.4.

(8) A media descriptor of 0xF8 means a hard disk.

(b) A value of 80 00 00 00 has been seen on a USB thumb drive which is formatted with NTFS under
Windows XP. Note this is removable media and is not partitioned, the drive as a whole is NTFS format-

ted.

(c) This can be negative, which means that the size of the MFT/Index record is smaller than a cluster. In
this case the size of the MFT/Index record in bytes is equal to 2*(-1 * Clusters per MFT/Index record).
So for example if Clusters per MFT Record is OxF6 (-10 in decimal), the MFT record sizeis 2*(-1 * -10)

49

NTFS Files

=210 = 1024 bytes.
9.5. Notes

9.5.1. Other Information
Thefirst 40 bytes are the same as for FAT boot sectors, except that unused fields are zeroed.
Because this file begins with a boot sector, it must start at physical cluster O (thisisthe only cluster that
NTFS can not move). This forces the data attribute of this file to be non-resident. Consequently, the

copy of the boot sector (critical data) can be located anywhere on the volume.

For crash recovery purposes Windows NT 3.51 saves a copy of the boot sector and putsit in the logical
middle of the volume. Windows NT and later put it at the end of the volume.

10. NTFS Files: $BadClus (8)

10.1. Overview

This Metadata file contains alist of all the bad clusters on the volume.
Thefileis sparse, with the only data runs pointing at bad clusters.

Naturally the file cannot be read.

10.2. $BadClus Attributes

Table 3.20. $BadClus Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_ NAME $BadClus

0x80 $DATA [Unnamed]

0x80 $DATA $Bad
10.3. Layout

10.3.1. Unnamed Data Stream
Thisisaways zero length.

10.3.2. $Bad Data Stream

It is afile the size of the volume. Any cluster that is OK, is represented by a sparse (zero) cluster. Any
bad cluster pointsto that cluster on disk.

10.4. Notes

50

NTFS Files

10.4.1. Other Information
A cluster isbad if it contains at |east one bad sector.

Because this system file works as any other file, all the bad clusters are marked as used in the $Bitmap
system file, so they can never ever be used by any other file.

NTFS support hot-fixing: no more FAT's "Abort, Retry, Fail?'. If a new bad cluster is found while the
system isrunning, it is silently added to thisfile. If the cluster was on afault tolerant volume, ftdisk (the
fault tolerant volume driver) reconstitutes the data and NTFS stores them in another free cluster.

» Hasan empty unnamed data stream.

¢ Hasanamed ($Bad) data stream, the size of the volume (sparse)

* entire volume of clusters (VCN)

» allocated size = volume size (bytes)

» dtribute size = volume size (bytes)

e initialised size= 0 (or is one of above, redundant)

* runsimply sparse file size of volume

e initialised = 0 implies completely sparse

This file deals with Clusters not sectors. The Cluster is the smallest unit of disk space that NTFS will
use.

11. NTFS Files: $Secure (9)

11.1. Overview

In NTFS v1.2, every file had a $SECURITY_DESCRIPTOR Attribute. It was inefficient to read and
check these for every file access and most of them were the same.

NTFS v3.0 introduced a new Metadata File $Secure.
A new field in $STANDARD_INFORMATION, the Security Id, isaindex into $Secure.
Thereis a Data Stream, $SDS, and two indexes $Sl1 and $SDH.

The Data Stream has a copy of every $SECURITY _DESCRIPTOR Attribute on the volume, and the in-
dexes cross-reference everything.

11.2. $Secure Attributes

Table 3.21. $Secure Attributes

Type Description Name
0x10 $STANDARD_INFORMATION
0x30 $FILE_ NAME $Secure

51

NTFS Files

Type Description Name
0x80 $DATA $SDS
0x90 $INDEX_ROOT $SDH
0x90 $INDEX_ROOT $Sl1
OxAO SINDEX_ALLOCATION $SDH
OxA0 $INDEX_ALLOCATION $Sl1
0xBO $BITMAP $SDH
0xBO $BITMAP $Sl1

11.3. Layout of the File

11.3.1.

11.3.2.

$SDS Data Stream

The Security Descriptor Stream ($SDS) contains alist of all the Security Descriptors on the volume.

Each entry is padded to a 16 byte boundary and has a hash for indexing purposes.

Table 3.22. Layout of $Secure:$SDS

Offset Size Description

0x00 4 Hash of Security Descriptor
0x04 4 Security Id

0x08 8 Offset of thisentry inthisfile
0x10 4 Size of thisentry

0x04 \% Self-relative Security Descriptor
V+0x04 P16 Padding

sorted by security id

Self-relative? == has 2 * SID
generally a large file, not all used
there may be missing entries - test

| arge bl ock of ids at start, then junk,

$SDH Index

The Security Descriptor Hash ($SDH) Index

Table 3.23. Layout of $Secure:$SDH

t hen anot her bl ock at 256KB

Offset Size Value Description

~ ~ ~ Standard Index Header
0x00 2 0x18 Offset to data

0x02 2 0x14 Size of data

0x04 4 0x00 Padding

0x08 2 0x30 Size of Index Entry

52

NTFS Files

Offset Size Value Description

Ox0A 2 0x08 Size of Index Key

0x0C 2 Flags

OxOE 2 0x00 Padding

0x10 4 Key Hash of Security Descriptor

0x14 4 Key Security Id

0x18 4 Data Hash of Security Descriptor

0x1C 4 Data Security Id

0x20 8 Data Offset to Security Descriptor (in $SDS)
0x28 4 Data Size of Security Descriptor (in $SDS)
0x2C P8 Data Padding

Last padding is

11.3.3. $SlI Index

al ways 4 bytes and al ways appears to be the Unicode string

The Security Id Index ($SII)

Table 3.24. Layout of $Secure:$Sl |

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x14 Offset to data

0x02 2 0x14 Size of data

0x04 4 0x00 Padding

0x08 2 0x28 Size of Index Entry

Ox0A 2 0x04 Size of Index Key

0x0C 2 Flags

Ox0E 2 0x00 Padding

0x10 4 Key Security Id

0x14 4 Data Hash of Security Descriptor

0x18 4 Data Security Id

0x1C 8 Data Offset to Security Descriptor (in $SDS)
0x24 4 Data Size of Security Descriptor (in $SDS)

This file is sorted by the hash.
The security descriptors are stored in the $SDS data stream

surprisingly the offset

11.4. Notes

(64 bit isn't 8 byte aligned)

53

NTFS Files

11.4.1. Questions

* Why do somefiles till have a $SECURITY_DESCRIPTOR Attribute?
e How isthe Security Hash generated?

12. NTFS Files: $UpCase (10)

12.1. Overview

Thisisa128KB file full of capital letters.
For each character in the Unicode alphabet, thereis an entry in thisfile.

It is used to compare and sort filenames.

12.2. $UpCase Attributes

Table 3.25. $UpCase Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $UpCase
0x80 $DATA [Unnamed]

12.3. Layout of the File
12.3.1. Unnamed Data Stream

Table 3.26. Layout of $UpCase

Offset Character

0x82 A

0x84 B

0x86 C
12.4. Notes

12.4.1. Other Information

Thisfile alows the system to compare filenames independently of their code page.

54

NTFS Files

13. NTFS Files: $Extend (11)

13.1. Overview

Windows 2K hasintroduced a new directory for metadata files.

Thisisadirectory containing the Metadata files: $0bjld, $Quota, $Reparse and $UsnJrnl.

13.2. $Extend Attributes

Table 3.27. $Extend Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Extend
0x90 $INDEX_ROOT $130

13.3. Layout of the File
13.3.1. $130 Index

Thisisan ordinary directory. There is no data stream for thisfile.

13.4. Notes
13.4.1. Other Information

Because there are only up to four files in this directory, there's never any need for an
$INDEX_ALLOCATION and a$BITMAP.

14. NTFS Files: $Objld (Any)

14.1. Overview

This system file is an index of al the $OBJECT_ID Attributes in use on the volume. See the
$OBJIECT _ID page for more details.

14.2. $ODbjld Attributes

Table 3.28. $Obj1d Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $ObjId
0x90 $INDEX_ROOT $0
OxAO0 $INDEX_ALLOCATION $0

55

NTFS Files

Type Description Name
0xBO $BITMAP $0
14.3. Layout of the File
14.3.1. $O Index
Table 3.29. Layout of $Objld:$O
Offset Size Value Description
~ ~ ~ Standard Index Header
0x00 2 0x20 Offset to data
0x02 2 0x38 Size of data
0x04 4 0x00 Padding
0x08 2 0x58 Size of Index Entry
Ox0A 2 0x10 Size of Index Key
0x0C 2 Flags
OxOE 2 0x00 Padding
0x10 16 Key GUID Object Id
0x20 8 Data MFT Reference
0x28 16 Data GUID Birth Volume Id
0x38 16 Data GUID Birth Object 1d
0x48 16 Data GUID Domain Id
14.3.2. Flags
Table 3.30. $Obj1d flags
Flag Description
0x01 Entry has subnodes
0x02 Last Entry
14.4. Notes

14.4.1.

Other Information

The index is called $0. This is an index of Object Ids. It should not be confused with the index of the

same name, used by the Metadata File $Quota.

Theindex, $O, is sorted by GUID (0x13). This Collation Rule is specified in the Index Root.

A file's $OBJECT _ID Attribute has a GUID that can be found in this Index. The Index's data provides

an MFT reference back to thefile.

56

NTFS Files

15. NTFS Files: $Quota (NT:9, 2K:Any)

15.1. Overview

Thisfilefirst appeared in Window NT, but wan't used. In Windows 2000, and later, it keeps track of file

quotas.

Quotas are kept per person and per volume.

15.2. $Quota Attributes

Table 3.31. $Quota Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Quota

0x90 $INDEX_ROOT $0

0x90 $INDEX_ROOT $Q

O0xA0 $INDEX_ALLOCATION $0

OxA0 $INDEX_ALLOCATION $Q

0xBO $BITMAP $0

0xBO $BITMAP $Q

15.3. Layout of the File
15.3.1. $O Index

Table 3.32. Layout of $Quota:$0

Offset Size Value Description

~ ~ ~ Standard Index Header
0x00 2 0x1C Offset to data

0x02 2 0x04 Size of data

0x04 4 0x00 Padding

0x08 2 0x20 Size of Index Entry
Ox0A 2 0x0C Size of Index Key (K)
0x0C 2 Flags

OxOE 2 0x00 Padding

0x10 K Key SID
K+0x10 4 Data Owner Id
K+0x14 P Data Padding8
Fl ags?

57

15.3.2.

15.3.3.

NTFS Files

$Q Index

header & repeating group

Table 3.33. Layout of $Quota: $Q

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x14 Offset to data

0x02 2 Size of data

0x04 4 0x00 Padding

0x08 2 Size of Index Entry

Ox0A 2 0x04 Size of Index Key

0x0C 4 0x00 Padding

0x10 4 Key Owner Id
0x14 4 0x02 Data Version

0x18 4 Data Flags

0x1C 8 Data Bytes Used
0x24 8 Data Change Time
0x2C 8 Data Warning Limit
0x34 8 Data Hard Limit
0x3C 8 Data Exceeded Time
0x44 Y, Data SID

V+0x44 P 0x00 Data Padding8

sid may be m ssing (quota flags =
paddi ng may not be necessary

i ndex key - xref to which index?
change tinme - date/tinme

default limt => no

exceeded tinme - 10/4/01 (not +5 days)

inthe last (null) entry, the padding at 0xOC = 0x02

Flags

Table 3.34. $Quota flags

SI D, just padding)

Flag Description

0x0001 Default Limits
0x0002 Limit Reached
0x0004 Id Deleted

0x0010 Tracking Enabled
0x0020 Enforcement Enabled
0x0040 Tracking Regquested

58

NTFS Files

Flag Description

0x0080 Log Threshold

0x0100 Log Limit

0x0200 Out Of Date

0x0400 Corrupt

0x0800 Pending Deletes
15.4. Notes

15.4.1. Other Information

The index is called $O. Thisis an index of Owner Ids. It should not be confused with the index of the
same name, used by the Metadata File $Objld.

A file's Owner Id is stored in the $STANDARD_INFORMATION Attribute. The Owner Id can be
looked up in $O, to give a Security Id (SID) or looked up in $Q to provide quota information.

The $Q i ndex contains one entry for each existing user_id on the
vol ume. The index key is the user_id of the user/group owning this
guota control entry, i.e. the key is the owner_id. The user_id of
the owner of a file, i.e. the owner _id, is found in the standard
information attribute. The collation rule for $Qis

CCOLLATI ON_NTOFS_ULONG

The $0O i ndex contains one entry for each user/group who has been
assigned a quota on that volune. The index key holds the SID of
the user _id the entry belongs to, i.e. the owner_id. The collation
rule for $0 is COLLATI ON_NTOFS_SI D.

The $O index entry data is the user_id of the user corresponding
to the SID.

This user_id is used as an index into $Qto find the quota control
entry associated with the SID.

16. NTFS Files: $Reparse (Any)

16.1. Overview

Win2K can mount volumes and shares on top of existing directories. This is managed part in software
and part by the volume itself.

16.2. $Reparse Attributes

Table 3.35. $Repar se Attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Reparse
0x90 $INDEX_ROOT $R

59

NTFS Files

Type Description Name
O0xAO0 $INDEX_ALLOCATION $R
0xBO $BITMAP SR

16.3. Layout of the File
16.3.1. $R Index

Table 3.36. Layout of $Reparse:$R

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x1C Offset to data

0x02 2 0x00 Size of data

0x04 4 0x00 Padding

0x08 2 0x20 Size of Index Entry

Ox0A 2 0x0C Size of Index Key

0x0C 2 Flags

OxOE 2 0x00 Padding

0x10 4 Key Reparse Tag (and Flags)
0x14 8 Key MFT Reference of Reparse Point
0x1C 4 0x00 Key Padding (align to 8 bytes)

0xA000003 flags - see $REPARSE PO NT
No dat a!

16.4. Notes
16.4.1. Other Information

More information needed.

17. NTFS Files: $UsnJrnl (Any)

17.1. Overview

A user-readable equivalent of the LogFile.

17.2. $UsnJdrnl Attributes

Table 3.37. $UsnJrnl Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

60

17.3.1.

NTFS Files

Type Description Name

0x30 $FILE_NAME $Usndrnl

0x80 $DATA $J

0x80 $DATA $Max
17.3. Layout of the File

$J Data Stream

repeati ng group

Table 3.38. Layout of $UsnJrnl:$J

Offset Size Description

0x00 4 Size of entry

0x04 2 Major Version

0x06 2 Minor Version

0x08 8 MFT Reference

0x10 8 Parent MFT Reference

0x18 8 Offset of thisentry in $J

0x20 8 Timestamp

0x28 4 Reason

0x2B 4 Sourcelnfo

0x30 4 SecuritylD

0x34 4 FileAttributes

0x38 2 Size of filename (in bytes)

O0x3A 2 Offset to filename

0x3C \% Filename

V+0x3C P Padding (align to 8 bytes)

17.4.
17.4.1.

$Max Data Stream

Table 3.39. Layout of $UsnJrnl:$M ax

Offset Size Description

0x00 8 Maximum Size
0x08 8 Allocation Delta
0x10 8 USN ID (a)

0x18 8 Lowest Valid USN

61

NTFS Files

(@ In version 2.0 of the USN Journal, Microsoft uses a FILETIME 64-bit value to randomize the USN
ID. However, future versions might use another way to generate the ID, so it is not safe to assume thisto
be the time of the journals creation.

17.5. Notes

Version Number

The current version number is 2.0 (Mgjor = 2, Minor = 0).

Reason Flags

Table 3.40. $UsnJrnl reason flags

Flag Description

0x01 Datain one or more named data streams for the file was overwritten.

0x02 Thefile or directory was added to. 0x04 The file or directory was truncated.

0x10 Datain one or more named data streams for the file was overwritten.

0x20 One or more named data streams for the file were added to.

0x40 One or more named data streams for the file was truncated.

0x100 Thefile or directory was created for the first time.

0x200 Thefile or directory was deleted.

0x400 The user made a change to the file's or directory's extended attributes. These NTFS at-
tributes are not accessible to Windows-based applications.

0x800 A change was made in the access rights to the file or directory.

0x1000 The file or directory was renamed, and the file name in this structure is the previous
name.

0x2000 Thefile or directory was renamed, and the file name in this structure is the new name.

0x4000 A user changed the FILE_ATTRIBUTE_NOT_CONTENT_INDEXED attribute.
That is, the user changed the file or directory from one that can be content indexed to
one that cannot, or vice versa.

0x8000 A user has either changed one or more file or directory attributes or one or more time
stamps.

0x10000 An NTFS hard link was added to or removed from the file or directory.

0x20000 The compression state of the file or directory was changed from or to compressed.

0x40000 Thefile or directory was encrypted or decrypted.

0x80000 The object identifier of the file or directory was changed.

0x100000 The reparse point contained in the file or directory was changed, or a reparse point
was added to or deleted from the file or directory.

0x200000 A named stream has been added to or removed from the file, or a named stream has
been renamed.

0x80000000 Thefile or directory was closed.

Source Info Flags

Table 3.41. $UsnJrnl sour ceinfo flags

62

NTFS Files

Flag

Description

0x01

The operation provides information about a change to the file or directory made by
the operating system. A typical use is when the Remote Storage system moves data
from external to local storage. Remote Storage is the hierarchical storage management
software. Such a move usudly a a minimum adds the
USN_REASON_DATA_OVERWRITE (0x01) flag to a USN record.

0x02

The operation adds a private data stream to a file or directory. An example might be a
virus detector adding checksum information. As the virus detector modifies the item,
the system generates USN records. USN_SOURCE_AUXILIARY_DATA (0x02) in-
dicates that the modifications did not change the application data.

0x04

The operation creates or updates the contents of a replicated file. For example, thefile
replication service sets this flag when it creates or updates a file in areplicated direct-
ory.

63

Chapter 4. NTFS Concepts

1. Overview
When afew linesin the glossary aren't enough.
1.1. Index

Table4.1. NTFS Concepts

Concept Description

Attribute Header Standard Attribute Header

Attribute Id Attribute Ids used in the MFT FILE Record
B*Tree Balanced tree data structure, holds the NTFS directory tree
Clusters LCNs, VCNs, sizes

Collation Sorting and searching

Compression File and directory level compression

Data Runs Dataruns

Directory A typical directory on NTFS

File A typical fileon NTFS

FILE Record An MFT File Record

Filename Namespace

Allowable filenames

FileRef

File References

Fixup Sector fixups

Index Header Standard Index Header
INDX Record A directory index

Links Hard and Symboalic links
Restart LogFile Restart Area

SID Built-in Security Identifiers
Sparse Sparsefiles

2. Concept - Attribute Header

2.1. Overview

Every attribute in every MFT record has a standard header. The header stores information about the at-
tribute'stype, size, name (optional) and whether it isresident, or not.

The size of the attribute depends on two things. Does it have a name? Is it resident? To simplify the
tables, all four possibilities will be shown in full (with some values already filled in).

2.2. Standard Attribute Header

NTFS Concepts

2.2.1. Resident, No Name

Table 4.2. Layout of aresident unnamed attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x10, 0x60)
0x04 4 Length (including this header)
0x08 1 0x00 Non-resident flag

0x09 1 0x00 Name length

O0x0A 2 0x00 Offset to the Name

0x0C 2 0x00 Flags

Ox0E 2 Attribute Id (@)

0x10 4 L Length of the Attribute

0x14 2 0x18 Offset to the Attribute

0x16 1 Indexed flag

0x17 1 0x00 Padding

0x18 L The Attribute

(a) Each attribute has a unique identifier

2.2.2. Resident, Named

Table 4.3. Layout of aresident named attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x90, 0xB0)
0x04 4 Length (including this header)
0x08 1 0x00 Non-resident flag

0x09 1 N Name length

Ox0A 2 0x18 Offset to the Name

0x0C 2 0x00 Flags

Ox0E 2 Attribute Id (@)

0x10 4 L Length of the Attribute

0x14 2 2N+0x18 Offset to the Attribute (b)
0x16 1 Indexed flag

0x17 1 0x00 Padding

0x18 2N Unicode The Attribute's Name
2N+0x18 L The Attribute (¢)

(a) Resident attributes cannot be compressed.

(b) Each attribute has a unique identifier.

NTFS Concepts

(c) Rounded up to amultiple of 4 bytes.

2.2.3. Non-Resident, No Name

Table4.4. Layout of a non-resident unnamed attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x20, 0x80)
0x04 4 Length (including this header)
0x08 1 0x01 Non-resident flag

0x09 1 0x00 Name length

Ox0A 2 0x00 Offset to the Name

0x0C 2 Flags

Ox0E 2 Attribute Id (@)

0x10 8 Starting VCN

0x18 8 Last VCN

0x20 2 0x40 Offset to the Data Runs

0x22 2 Compression Unit Size (b)

0x24 4 0x00 Padding

0x28 8 Allocated size of the attribute (¢)
0x30 8 Real size of the attribute

0x38 8 Initialized data size of the stream (d)
0x40 Data Runs

() Each attribute has a unique identifier

(b) Compression unit size = 2 * clusters. 0 implies uncompressed

(c) Thisisthe attribute size rounded up to the cluster size

(d) When isthis not equal to the allocated size?

2.2.4. Non-Resident, Named

Table 4.5. Layout of a non-resident named attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x80, 0XAQ)
0x04 4 Length (including this header)
0x08 1 0x01 Non-resident flag

0x09 1 N Name length

Ox0A 2 0x40 Offset to the Name

0x0C 2 Flags

O0x0E 2 Attribute Id (@)

0x10 8 Starting VCN

66

NTFS Concepts

Offset Size Value Description

0x18 8 Last VCN

0x20 2 2N+0x40 Offset to the Data Runs (b)

0x22 2 Compression Unit Size (c)

0x24 4 0x00 Padding

0x28 8 Allocated size of the attribute (d)
0x30 8 Real size of the attribute

0x38 8 Initialized data size of the stream (€)
0x40 2N Unicode The Attribute's Name

2N+0x40 Data Runs (b)

(a) Each attribute has a unique identifier

(b) Rounded up to a multiple of 4 bytes

(c) Compression unit size = 2 * clusters. 0 implies uncompressed
(d) Thisisthe attribute size rounded up to the cluster size

(e) When isthis not equal to the all ocated size?

2.2.5. Flags

Table 4.6. Attribute flags

Flag Description

0x0001 Compressed

0x4000 Encrypted

0x8000 Sparse
2.3. Notes

2.3.1. Other Information

Only the data attribute can be compressed, or sparse, and only when it is non-resident.

Although the compression flag is stored in the header, it does not affect the size of the header.
nane isn't null term nated

FI XMVE

0x40 _ s64 conpressed_si ze;

Byte size of the attribute value after conpression.

Only present when conpressed. Always is a multiple of the cluster

size. Represents the actual anmount of disk space being used on the disk.

FIXME: Theindexed flag only appearsin the resident attributes. Does this mean you can only index res-

67

NTFS Concepts

ident attributes?

3. Concept - Attribute Id

3.1. Overview

Every Attribute in every FILE Record has an Attribute Id. This Id is unique within the FILE Record and
is used to maintain data integrity.

link to file record afield of the FILE Record each attribute has an id reused when zero skipped
Next Attribute Id

The Attribute Id that will be assigned to the next Attribute added to this MFT Record.

N.B. Incremented each timeit is used.

N.B. Every timethe MFT Record isreused thisId is set to zero.

N.B. The first instance number is always 0.

4, Concept - B*Trees

4.1. Overview

B+Trees

fixed order

hei ght bal anced

during add/renove of keys
m ni mal di st urbance

poi nters downwards only

4.2. Basic Terminology

+ Key
An object bearing data
o Ledf
A key with no children
* Node
A collection of keys
e Order
A node of order n, has a maximum of n-1 keys

e Tree

68

NTFS Concepts

An ordered data structure
* Root Node
A node with no parent
+ Median
The ceil((n-1)/2)th key in anode
e Siblings
Two keys in the same node, or two nodes with the same parent
* Depth

The number of layersin the tree. Grandparent, parents, children =3

e Db-tree
A balanced tree
e Dbttree

A balanced tree whose nodes are at least 1/2 full
e b*tree

A balanced tree whose nodes are at |east 2/3 full

4.3. NTFS Trees

i ndex root

i ndex al l ocation

dumy keys

data in non-|eaf keys

on-di sk pointer only point down

VWhat we have so far

Overvi ew

Add Rul es

Find the first key that is larger than the new key
(this will be a necessarily be a | eaf)
Insert the new key before this key (in the sane node)
VWi le the node is full
Split the current node in two
Pronote the nedian key to the parent
g Now consi der the parent
En

Del et e Rul es

69

NTFS Concepts

Del ete the key
If the key had children

End

Fi nd the successor and nove it to this node
Now consi der the successor's old node

Wi le the node isn't full enough

End

If a sibling has enough keys

steal one

El se

Conbi ne with one of the sibling

End

4.4. Discussion

A discussion log from #ntfs on IRC.

flatcap :
Oracl e:
flatcap :
Oracl e:
Oracl e:
flatcap :
Oracle:

Oracle_:

—h —h|

QD

=

Q

—h —h|

QD

e}
o

tcap :
tcap :
Oacle :
tcap :
Oracle_:
tcap :
tcap :
acle_:
Oracl e:
flatcap :
flatcap :

Oracle_:
tcap :

hi Oacle_

hi there

anything I can do for you?

| was wondering about the B+ trees of ntfs

they seemto be a bit awkward, or at |east - not what | expected :)
they do_ seemstrange, but they are perfect for fil esystens

no, i meant their on-disk representation

t hey have a dunmy node of sorts?

the trees in ntfs aren't proper b+trees

a dummy key
that's exactly what | was hoping to hear
(thinking is still a bit hard this norning, bear with ne :-)

no problem;-)

the trees consist of a node, which contains keys

the keys in a real (ideal world) b+tree are just separators, and the d
right

btw - how big is a node under ntfs? i mean, how nmany keys fit in there
the INDX record is 4k, an you can get 10's of filenames in it

but..., that depends on the lengths of the fil enanes

i thought the nunmber of keys in a node was a fixed property of a b+ tr
hehe, usually, yes

the keys of ntfs actually contain data and also a pointer to their ch
so i noticed

one shoul d add that | NDX records of 2k size have al so been seen in the

real ly?
what OS?
NT4

because there's one nore child than key, there has to be a dumy key (
i nteresting..

sone of ny directories (e.g. c:\winnt and c:\programfiles) have 2k IN
so the dunmy key is always the "largest"?

yes

i see...

so if the non-leaf nodes have data of thenselves, wouldn't that make t
I'"ve just witten a test programto help me understand the trees, whic
I'd love to see that

| read a lots of webpages and | think that the nearest termis a b*tre
and howis it different froma b-tree?

a b-tree maintains a mninumof 1/2 full nodes (except for the root no
a b*tree changes the rules slightly and maintains 2/3 ful

SO itljust changes the rul es of conbining two nodes to one and such?
exactly

70

NTFS Concepts

Oracle: hnmm ..

Oracle: let me think about that for a nmonent :)

flatcap : in a true b+tree, the data keys (leaves) should al so have pointers to
flatcap : I'"'mgoing to wite up everything | know about ntfs trees soon
_Oracle : let nme see if i got that...

Oracle : the index root points to the root |INDX record

flatcap : you can see ny test prog at: http://linux-ntfs.bkbits.net:8080/tng-su
Oracle: each INDX record contains keys that have pointers to the files thensel
flatcap : yes

Oracle: | see

flatcap : the index root lives in the MFT record

Oracle: Yeah, this | nanaged to di scover :)

flatcap : all the rest (index allocations) are non-res

Oracle: and the nunber of keys in a single INDX record is conpletely flexible?
AntonA : yes

flatcap : yes, but there's a m ninum

AntonA : a mninun?

flatcap : yes, that's part of the tree algorithm

AntonA : surely the mninmumis a non-data containing termnator entry?
Oracle: what's the m ni nun?

flatcap : the minimumfor a b+tree is 1/2 full, b* 2/3 full

flatcap : only the root node may contain fewer
Oracle_: oh.
Oracle_: yeah

AntonA : and the |ast node...

flatcap : the keys are noved about to keep this true

flatcap : even the |ast node will have the "right nunmber" in it

AntonA : that would nean that in a really large directory deleting one file cou

flatcap : no, you might think that, but the balancing doesn't affect nany other
flatcap : if the tree is 4 deep (NTFS equiv say 10”5 files), you'd only be alter
flatcap : I'Il draw | ots of pictures when | have a nonent (probably tonorrow)
Oracle: that should be interesting to read!

flatcap : are you on our dev mailing list, Oacle_

Oracle: What nmailing list? (er... no.)

AntonA : the mmjor question that springs to ny mnd is what woul d wi ndows ntfs
flatcap : hehe, | hate to think :-)

~Oracle : | wouldn't want to be there, that's for sure

flatcap : chkdsk woul d probably try and rebalance it and you m ght find that ntf
Oracle: howdo i join the list?

flatcap : http://lists.sourceforge.net/lists/listinfo/linux-ntfs-dev

AntonA : um it would be a |ot easier to get directory operations working while
flatcap : I'Il mail the list and answer questions there

AntonA : if windows is able to pickup the pieces without conplaint / failure, i

flatcap : yes possibly, but I think I know enough now to build sonething close e
flatcap : (I just wanted a big project where | could start w thout tripping over

AntonA : cool
Oracle: 1've got a few nore questions if you have the tinme
AntonA : As | said before. | amnot going anywhere near directories. (-:

flatcap : sure
Oracle: Smaller ones, though

4.5. References

Here are some sites that | found helpful whilst writing the B-Tree code.

http://tide.it.bond.edu.au/inft320/003/lectures/physical.htm
http://cis.stvincent.edu/carl sond/swdesign/btree/btree.html
http://www.fit.qut.edu.au/~maire/bacbab/baobab.html
http://www.fit.qut.edu.au/~maire/baocbab/lecture/index.htm

71

http://tide.it.bond.edu.au/inft320/003/lectures/physical.htm
http://cis.stvincent.edu/carlsond/swdesign/btree/btree.html
http://www.fit.qut.edu.au/~maire/baobab/baobab.html
http://www.fit.qut.edu.au/~maire/baobab/lecture/index.htm

NTFS Concepts

5. Concept - Clusters

5.1. Overview

In NTFS, the Cluster is the fundamental unit of disk usage. The number of sectors that make up a cluster
is always a power of 2, and the number is fixed when the volume is formatted. This number is called the
Cluster Factor and is usually quoted in bytes, e.g. 8KB, 2KB. NTFS addresses everything by its Logical
Cluster Number.

5.1.1. Logical Cluster Number (LCN)

Each cluster in avolume is given a sequential number. Thisisits Logical Cluster Number. LCN 0 (zero)
refersto the first cluster in the volume (the boot sector).

To convert from an LCN to a physical offset in the volume, multiply the LCN by the Cluster Size.

5.1.2. Virtual Cluster Number (VCN)

Each cluster of a non-resident stream is given a sequential number. Thisisits Virtual Cluster Number.
VCN 0 (zero) refersto the first cluster of the stream.

To locate the stream on disk, it's necessary to convert from aVCN to an LCN. Thisis done with the help
of dataruns.

5.1.3. Data Runs

Each contiguous block of LCNs is given a Data Run, which contains a VCN, an LCN and a length.
When NTFS needs to to find an object on disk, it looks up the VCN in the Data Runs to get the LCN.

5.2. Notes

5.2.1. Other information
The Cluster Size can be chosen when the volume is formatted.

The Cluster Size for avolume is stored in $Boot. Also defined there is the size, in clusters, of an MFT
File Record and an Index Record.

By using Cluster Numbers, NTFS can address larger disks than if sectors numbers were used.
A list of allowed and default cluster sizesis shown below.

Windows NT

512bytes, 1KB, 2KB or 4KB

Windows 2000, Windows XP

512bytes, 1KB, 2KB, 4KB, 8KB, 16KB, 32KB or 64KB

Table4.7. Default cluster size

72

NTFS Concepts

Volume Size Default Cluster Size
<512MB Sector size

<1GB 1KB

<2GB 2KB

>2GB 4KB

5.2.2. Questions

Why does NTFS use Virtua Cluster Numbers?

6.1. Overview

To be able to search and sort objects under NTFS

Table 4.8. Collation types

6. Concept - Collation

Value Name Comparethe Valuesas:

0x00 Binary Binary, where the first byte is
most significant

0x01 Filename Unicode strings

0x02 Unicode Unicode strings, except that up-
per case letters should come first

0x10 ULONG An unsigned long (32 bits, little-
endian)

0x11 SID A security identifier

0x12 Security Hash First compare by the Security
Hash, then by Security Identifier

0x13 ULONGS A set of unsiged longs (32 hits,
little-endian)

6.2. Usage

Here are some examples of where various collation rules are used.

Table 4.9. Default collationstypesfor standard indexes

Name Used By

ULONG $Sl1 in file $Secure

SID $O in file $Extend/$Quota
Security Hash $SDH in file $Secure
ULONGS $0 in file $Extend/$0bjId

73

NTFS Concepts

6.3. Notes
6.3.1. Questions

When comparing by ULONGS, where is the maximum length specified? Or, can two objects never have
identical ULONGS?

Ox13 ULONGS refers to GUI Ds TEST

7. Concept - Compression

7.1. Overview

here's a short summary of the mechanism: data. These are compressed using a modified LZ77 algorithm.
The basic idea is that substrings of the block which have been seen before are compressed by referen-
cing the string rather than mentioning it again. For example, Consider the Plain text

#i ncl ude <ntfs. h>\n
#i ncl ude <stdi o. h>\n

Thisis compressed to #include <ntfs.h>\n (-18,10)stdio(-17,4)

So the agorithm recognizes that -18 bytes from the current position, it has already seen the text
‘#include <'. Then, stdio is new, but '.h>\n" has been seen before.

The interesting details are in the question? How to encode the pair (-18,10), and how to mix this with
plain-text strings. The first thing to understand is that such a pair is recorded in two bytes. Because a
back-reference takes two bytes, there is no point in back-referencing one- or two-byte substrings. This
means the shortest possible substring is 3. This means that length values of 0, 1, and 2 are not possible.
So you can subtract 3 of the length before encoding it. Also, the references are aways backward, and
never 0. So you can store them as positive numbers, and subtract one. The first back-reference is stored
as (17,7), and the second one as (16,1).

Given that ablock is 4096 in size, you might need 12 bits to encode the back reference. This means that
you have only for bits left to encode the length, allowing for a maximum length of 19. Thisis not desir-
able asit limitsto compression ratio to 1:19. OTOH, if the current offset is, say, 123, a back reference of
-512 is not possible. Some clever MS engineer decided to dynamically allocate more bits for the back-
reference and less for the length. The exact split can be written as atable, or as

for(i=clear_pos-1, | mask=0xFFF, dshi ft=12; i >=0x10; i >>=1) {
I mask >>= 1; /* bit mask for length */
dshift—+ /[* shift width for delta */

Now that we can encode a (offset,length) pair as two bytes, we till have to know whether atokenis a
back-reference, or plain-text. Thisis one bit per token. Eight tokens are grouped together and preceded
with the tags byte. So the group

74

NTFS Concepts

>\ n(18, 10)stdio

would be encoded as

00000100 > \n OA90 st di o

(the 1 bit indicates the back reference). As an extreme case, a block of all space (' *) is compressed as

00000010 ' ' FC OF

or "' (-1,4095). This works because you always read data you just stored. As a compression unit consists
of 16 clusters, it usually contains more than one of these blocks. If you want to access the second block,
it would be a waste of time to decompress the first one. Instead, each block is preceded by a 2-byte
length. The lower twelve bits are the length, the higher 4 bits are of unknown purpose.

FI XME: Conpression unit's size 2"4 in attribute header.

The conpression nethod is based on independently conpressing bl ocks of X

clusters, where X is determ ned fromthe conpression_unit value found in the
non-resident attribute record header (nmore precisely: X = 2*conpression_unit
clusters). On Wndows NT/2k, X always is 16 clusters (conpression_unit = 4).

1) The data in the block is all zero (a sparse bl ock):

This is stored as a sparse block in the run list, i.e. the run |ist
entry has length = X and Icn = -1. The nmapping pairs array actually
uses a delta Icn value length of 0, i.e. delta lcn is not present at
all, which is then interpreted by the driver as lcn = -1.

NOTE: Even unconpressed files can be sparse on NTFS 3.0 vol unes, then
t he sane principles apply as above, except that the length is not
restricted to being any particul ar val ue.

2) The data in the block is not conpressed:
Thi s happens when conpression doesn't reduce the size of the block
in clusters. I.e. if conpression has a snall effect so that the
conpressed data still occupies X clusters, then the unconpressed data
is stored in the bl ock.
This case is recognised by the fact that the run list entry has
length = X and Icn >= 0. The mapping pairs array stores this as
normal with a run length of X and sone specific delta lcn, i.e.
delta_lcn has to be present.

3) The data in the block is conpressed:
The conmon case. This case is recognised by the fact that the run
list entry has length L < X and Icn >= 0. The mapping pairs array
stores this as normal with a run I ength of X and sonme specific

delta_lcn, i.e. delta_lcn has to be present. This run list entry is
i mediately foll owed by a sparse entry with length = X - L and
lcn = -1. The latter entry Is to make up the vcn counting to the

full conpression block size X

In fact, life is nore conplicated because adjacent entries of the sane type

can be coal esced. This neans that one has to keep track of the nunber of
clusters handl ed and work on a basis of X clusters at a tinme being one

bl ock. An exanple: if length L > X this means that this particular run |ist
entry contains a block of Ilength X and part of one or nore bl ocks of |ength

75

NTFS Concepts

L - X. Another exanple: if length L < X, this does not necessarily mean that
the block is conpressed as it night be that the I cn changes inside the bl ock

and hence the following run list entry describes the continuation of the
potentially conpressed bl ock. The bl ock woul d be conpressed if the
following run I1st entry describes at least X - L sparse clusters, thus
nmaki ng up the conpression block | ength as described in point 3 above. (O

course, there can be several run list entries with small | engths so that the

sparse entry does not follow the first data containing entry with
length < X.)

NOTE: At the end of the conpressed attribute value, there nost likely is not
just the right amount of data to nmake up a conpression block, thus this data

is not even attenpted to be conpressed. It is just stored as is.

If you look at the algorithm, you will notice that it will not always reduce the data size. If there are no
back references, each byte plain-text will remain as-is. However, every 8 bytes, a tag bit is inserted,
which then will be zero. So, in the worst case, a block might grow to 4610 bytes (counting the length of
the block). If the block growsin size, it will be stored uncompressed. A length of exactly 4095 is used to
indicate this case. It might be still possible that the following block will compress well, reducing the
total size of the chunk. If it doesn't, the entire chunk is stored uncompressed, which is indicated in the
run list.

> each block is preceded by a 2-byte length. The lower twelve bits are the >length, the higher 4 bits are
of unknown purpose.#

Bit 0x8000 is the flag specifying that the block is compressed. The compression code OR's in the value
0xBO0O0O (if its compressed), but the decompression code only looks at bit 0x8000.

Also, the length is actually stored as (n-3) in the low 12 bits. Actualy, (n-1) if you don't count the two
bytes used to store the length itself. So for an uncompressed block the length is stored as OxFFF, mean-
ing the length is 4096 + 2 more bytes holding the length itself.

A 0x1000 length block compressed to length 0x500 would require 0x502 bytes, and have an advertised
length of Ox4FF.

What | don't know iswhether a 16 cluster file that doesn't compress at all requires 17 clusters to store, in
order to accommodate the extra 2 bytes per block.

| believe it will take only 16 clusters. The fact that it is not compressed will be expressed in the run list.
For example, the compressed file will look like

(1000 A) (0 6) /1 (rel.VCN | ength)

whereas the uncompressabl e file will ook like

(1000 10)

or

(1000 A) (1040 6)

76

NTFS Concepts

IOW, if you don't have any runs with VCN==0 in the 16 clusters, the chunk is entirely uncompressed
and plain. Given the compression algorithm, it isfairly easy to create such afile:

s=""
for i in range(0, 16): #adjust to clusters >512 if necessary

s=s+chr (i) +chr(j)
open("unconpressabl e","w').wite(s)

8. Concept - Data Runs

8.1. Overview

Non-resident attributes are stored in intervals of clusters called runs. Each run is represented by its start-
ing cluster and its length. The starting cluster of arun is coded as an offset to the starting cluster of the
previous run.

Normal, compressed and sparse files are all defined by runs.

The examples start simple, then quickly get complicated.

Thisis atable written in the content part of a non-resident file attribute, which allows to have access to
its stream.

NB Assume a 1K B cluster size, throughout. And little endian disk storage.

8.2. Layout

The runlist is a sequence of elements. each element stores an offset to the starting LCN of the previous
element and the length in clusters of arun.

To save space, Offset and Length are variable size fields (probably up to 8 bytes), and an element is
written in this crunched format:

Table 4.10. Layout of adatarun

Offset in nibble to|Size Description

the beginning of

the element

0 1 F=Size of the Offset field

1 1 L=Size of the Length field

2 2L Length of the run

2+2%L 2*F Offset to the starting LCN of the previous element

Offset to the starting LCN of the previous element

Thisis asigned value. For the first element, consider the offset as relative to the LCN 0, the beginning
of the volume.

The layout of the runlist must take account of the data compression: the set of VCNs containing the

77

8.2.1. ..

NTFS Concepts

stream of a compressed file attribute is divided in compression units (also called chunks) of 16 clusters:
VCNs 0 to 15 constitutes the 1st compression unit, VCNSs 16 to 31 the 2nd one, and so on... For each

compression unit,

* Theaphastage of compression isvery simple and is independent of the compression engine used to
compress the file attribute: if all the 16 clusters of a compression unit are full of zeroes, this com-
pression unit is called a sparse unit and is not physically stored. Instead, an element with no Offset
field (F=0, the Offset is assumed to be 0 too) and a Length of 16 clustersis put in the runlist.

» Else, the beta stage of compression is done by the compression engine used to compress the file at-
tribute: if the compression of the unit is possible, N (< 16) clusters are physically stored, and an ele-
ment with a Length of N is put in the runlist, followed by another element with no Offset field (F=0,

the Offset is assumed to be 0 too) and a Length of 16 - N.

» Else, the unit is not compressed, 16 clusters are physically stored, and an element with a Length of

16 isput in the runlist.

In practice, thisis abit more complicated because some of the element can be gathered. But let's take an

.Example

We have to decode the following runlist:

Runl i st :

21 14 00 01 11 10 18 11 05 15

Decode
0x14
0x10
0x05
0x27
0x20

Absol ut e
0x14
0x10
0x05
0x27
0x20

Regr oup
0x10

0x04
oxoC

0x04
0x05
0x07
0x10
0x10
0x10

0x10

at
at
at
at
at

LCNs
at
at
at
at
at
at

at
at

at
at
at
at
at
at

at

+ + 4+ +

0x100
0x18
0x15
none
0x05

0x100
0x118
0x12D
none

0x132
0x100

0x110
0x118

0x118
0x12D
none
none
none
0x132

0x142

21
11
11
01
11

0x100,
0x18,
0x15,
0x27,
0x05,

01 27 11 20 05

0x14
0x10
0x05
none
0x20

78

NTFS Concepts

Conpressi on unit begi nning at VCN 0x0
0x10 clusters at LCN 0x100
Unit not conpressed

Conpressi on unit beginning at VCN 0x10
Ox4 clusters at LCN 0x110

OxC clusters at LCN 0x118

Unit not conpressed

Conpression unit beginning at VCN 0x20
0x4 clusters at LCN 0x124

0x5 clusters at LCN 0x12D

Ox7 unused clusters: conpressed unit

Conpressi on unit begi nning at VCN 0x30
0x10 zeroed clusters: sparse unit

Conpressi on unit beginning at VCN 0x40
0x10 zeroed clusters: sparse unit

Conpression unit begi nning at VCN 0x50
0x10 clusters at LCN 0x132
Unit not conpressed

Conpressi on unit begi nning at VCN 0x60
0x10 clusters at LCN 0x142
Unit not conpressed

file.txt 31KB bytes (disk has a 1KB cl uster size)
it's stored at clusters 10-26, 45-49, 100-108

17 clusters at LCN 10
5 <clusters at LCN 45
9 clusters at LCN 100

next make the offsets relative

17 clusters at LCN 10
5 clusters at LCN 45
9 clusters at LCN 100

i's encoded as
11

working in unit of 16 clusters
relative offsets (including -ve)
conpressed sparse

variable Il ength structures

stored as:

save space i nplies wherever MFT pl aces
data it's best not to spread it too far

-ve inmplies an offset of +129 would have to use two bytes
therefore -10 = OxF6

0x80 = -128

OXFF7F = -129

21 14 00 01 11 10 18 11 05 15 01 27 11 20 05

79

NTFS Concepts

8.3. dataruns

Length and starting cluster are variable size fields. The first byte of a run indicates the size of both. The
size of the offset is stored in the high nibble, and the size of the length in the low nibble.

For compressed or sparse runs, the offset is 0, and the size of the offset is also 0. Each compression unit
starts at a multiple of 16 clusters. If compression is possible, at the VCN of a unit will be one or more
data runs followed by an empty run. If there are data runs for more than 16 clusters, the unit was not
compressible. If thereisno datarun at al (only alarge empty run), the unit Consists of All zeroes.

Exanpl e: 21 20 ED 05 22 48 07 48 22 21 28 C8 DB

First run: 20 clusters starting from5ED (5ED to 60D)

2nd run: 748 clusters starting from 5ED+2248 (2835 to 2F7D)
3rd run: 28 clusters starting from 2835+DBC8 (3FD to 425)

Note that the offset is interpreted as signed value.

Take afile of size 0x80 clusters (anywhere on disk). This is represented by VCN (virtual cluster num-
bers) 0x00 to Ox7F. These VCNs are mapper to LCN (logical cluster numbers) in runs (or extents), eg 21
80 30 60 00.

These runs are variable length, terminated with a zero. The low nibble of the first byte determines the
length of the next number (1 byte) namely 80. The high nibble determines the length of the following
number (2 bytes) namely 6030.

Outcome: 80 clusters, starting at cluster 6030.

The "sizes" are stored in one byte. The length is unsigned. The offset is signed and relative to the previ-
ous of fset.

113060-21100001-1120E0-00

Run 1 length 30 offset 60 (first run relative to 0)
Run 2 length 10 offset 100 + 60
Run 3 length 20 offset 160 - 20 (EO == -20)

80

Files are represented by a set of VCNSs. Sparse files, smply, have VCNs missing, eg

21 09 F5 47 9 clusters from 47F5

01 07 7 clusters from nowhere (0)
11 07 09 7 clusters from47F5 + 9
0x17

123456789ABCDEFG1234. .. VCN
RRRRRRRRRZZZZZZZRRRR. . . Real / Zero

Compresses files are first broken into blocks of 16 (0x10) clusters. Imagine:

VCNO123. ..

80

NTFS Concepts

XXXXXXXXXXOOOOO X=DATA O=SPACE

The datais compressed, here, into just ten clusters (If we can't save 1 cluster in 16, we don't bother) The
aboveis coded as:

21 OA 10 F6 10 clusters of conpressed data at F610
01 06 6 clusters of nothing to round up this block to 16

The 6 extra clusters aren't actually taking up any disk space. The VCNs are bunched into 16s. {{ If a
block cannot be compressed, it would be represented by:

21 10 10 F6 16 clusters of conpressed data at F610

Fl XMVE

In fact, life is nore conplicated because adjacent entries of the sane type
can be coal esced. This neans that one has to keep track of the nunber of
clusters handl ed and work on a basis of X clusters at a time being one

bl ock. An exanple: if length L > X this neans that this particular run |ist
entry contains a block of length X and part of one or nore blocks of |ength
L - X Another exanple: if length L > X, this does not necessarily mean that
the block is conpressed as it might be that the I cn changes inside the bl ock
and hence the following run list entry describes the continuation of the
potentially conpressed bl ock. The bl ock woul d be conpressed if the
following run list entry describes at least X - L sparse clusters, thus
maki ng up the conpression block I ength as described in point 3 above. (O

course, there can be several run list entries with small lengths so that the
sparse entry does not follow the first data containing entry with
length < X.)

NOTE: At the end of the conpressed attribute value, there nost likely is not
just the right anmpunt of data to nake up a conpression block, thus this data
is not even attenpted to be conpressed. It is just stored as is.

Compressed and sparse runs can be intermixed. All thisto save space.

8.4. Examples

8.4.1. Example 1 - Normal, Unfragmented File
Dataruns: 21 18 34 56 00

Regrouped: 21 18 34 56 - 00

Table4.11. Parsed dataruns: Example 1 - Normal, Unfragmented File

Nu |Group Header Data
m Length size |Offset size |Length |Offset
1 (21183456 1 byte 2 bytes 0x18 (1|0x5634 (2 bytes)
byte)

81

NTFS Concepts

Nu |Group Header Data

m Length size |Offset size |Length |[Offset
2 |00 End
Summary:

e 0x18 Clusters @ LCN 0x5634

Therefore, Datal is aunfragmented file, of size 0x18 clusters, starting at LCN 0x5634.

8.4.2. Example 2 - Normal, Fragmented File
Dataruns: 31 38 73 25 34 32 14 01 E5 11 02 31 42 AA 00 03 00
Regrouped: 31 38 73 25 34 - 32 14 01 E5 11 02 - 31 42 AA 0003 - 00

Table 4.12. Parsed data runs: Example 2 - Normal, Fragmented File

Nu |Group Header Data
m Length size |Offset size |[Length |Offset
1 3138732534 1 byte 3 bytes 0x38 |0x342573 (3 bytes)
321401E51102 |2bytes 3 bytes 0x114 |0x363758 (Ox211E5 relative to
0x342573)
3 [3142AA 0003 1byte 3 bytes Ox42 |0x393802 (Ox300AA relative to
0x363758)
4 |00 End
Summary:

* 0x38 Clusters @ LCN 0x342573
e 0x114 Clusters @ LCN 0x363758
e 0x42 Clusters @ LCN 0x393802

Therefore, Data2 is a fragmented file, of size OX18E clusters, with data blocks at LCNs 0x342573,
0x363758 and 0x393802.

8.4.3. Example 3 - Normal, Scrambled File
Dataruns:; 11 30 60 21 10 00 01 11 20 EO 00

Regrouped: 113060-21100001-1120EOQ - 00

Table 4.13. Parsed data runs: Example 3 - Normal, Scrambled File

82

NTFS Concepts

Nu |Group Header Data
m Length size |Offset size |Length |[Offset
1 (113060 1 byte 1 byte 0x30 (1|0x60 (1 byte)
byte)
2 |21100001 1byte 2 bytes 0x10 |0x160 (0x100 relative to 0x60)
3 |1120E0 1 byte 1 byte 0x20 0x140 (-0x20 relative to 0x160)
4 |00 End
Summary:

* 0x30 Clusters @ LCN 0x60

* 0x10 Clusters @ LCN 0x160

* 0x20 Clusters @ LCN 0x140

Therefore, Data3 is a badly fragmented file of size 0x60 clusters, with data blocks at LCNs 0x60, 0x160

and 0x140. Furthermore, the third block of data is physicaly located between the first and second
blocks. (The third run has a negative offset, placing it before the previous run).

8.4.4. Example 4 - Sparse, Unfragmented File
Dataruns; 11 30 20 01 60 11 10 30 00
Regrouped: 113020-0160-111030- 00

Table 4.14. Parsed data runs. Example 4 - Spar se, Unfragmented File

Nu |Group Header Data
m Length size |Offset size |Length |Offset
1 (113020 1 byte 1 byte 0x30 (1|0x20 (1 byte)
byte)
2 (0160 1byte 0 bytes 0x60 N/A
31111030 1 byte 1 byte 0x10 0x50 (0x30 relative to 0x20)
4 |00 End
Summary:

e 0x30 Clusters @ LCN 0x20
* 0x60 Clusters (sparse)

e 0x10 Clusters @ LCN 0x50

Therefore, Datad is a sparse, unfragmented file, of size OxAO clusters, with data blocks at LCNs 0x20
and 0x50.

Thisfile has a sparse part in the middle of size 0x60 clusters. It takes up no space on disk, but it it rep-

83

NTFS Concepts

resented by 0x60 VCNs.

8.4.5. Example 5 - Compressed, Unfragmented File
Dataruns; 1108 40 01 08 11 10 08 11 OC 10 01 04 00

Regrouped: 11 0840-0108- 111008 - 11 0C 10- 01 04 - 00

Table 4.15. Parsed data runs: Example 5 - Compressed, Unfragmented File

Nu |Group Header Data
m Length size |Offset size |Length |Offset
1 /110840 1 byte 1 byte 0x08 (1]0x40 (1 byte)
byte)
2 |0108 1 byte 0 bytes 0x08 N/A
3 (111008 1byte 1 byte 0x10 |0x48 (0x08 relative to 0x40)
4 1110C 10 1 byte 1 byte 0x0C |0x58 (0x10 relative to 0x48)
5 10104 1 byte 0 bytes 0x04 N/A
6 |00 End
Summary:

0x08 Clusters @ LCN 0x40
e 0x08 Clusters (sparse)

* 0x10 Clusters @ LCN 0x48
» 0OxOC Clusters @ LCN 0x58

* 0Ox04 Clusters (sparse)

Therefore, Datab is a compressed, unfragmented, file of length 0x30, with data blocks at LCNs 0x40,
0x48 and 0x58.

The data, as stored on disk, is contiguous. The sparse runs pad out the compression units to blocks of 16
clusters (0x10).

8.4.6. Example 6 - Compressed, Sparse, Fragmented File

brain damaged file

9. Concept - Directory

9.1. Overview

Under NTFS every object on the volumeis afile, even directories. A directory isan index of filenames.

9.2. Attributes

NTFS Concepts

Table 4.16. A directory record attributes

Type Description Name
Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME dirname
0x50 $SECURITY_DESCRIPTOR

0x90 $INDEX_ROOT $I30
OxA0 $INDEX_ALLOCATION $I130
0xBO $BITMAP $I130

9.2.1.
9.2.1.1. Index Entry

Anindex isalist of index entries. Each entry contains the name of the file, the standard information and
apointer to the security information. The correct starting place isthe Index Entry.

9.2.1.2. Index Root

This attribute, which is always resident, holds several index entries. It forms the root of the index tree.
9.2.1.3. Index Allocation

A set of runstelling the system where the other indexes are. (preposition!)
9.2.1.4. Index Bitmap

Which clusters (indexes) arein use.

A directory can even have a naned data stream

9.3. Definition

From an human's point of view, a directory is a particular kind of file that can contain other files. Itisa
filefolder, used in a nested way to create alogical file hierarchy on avolume.

9.4. Properties

From NTFS point of view, adirectory is an index of file names, or more accurately a sequence of index
entries containing a filename attribute. An index entry is created for each file name attribute of each file
contained in the folder. Thiskind of index entries can be compared together using the alphabetical order
on their upper-cased (thanks to $UpCase) file name attribute.

A directory has no data attribute. But, as an index, it has instead three other file attributes: index root, in-
dex allocation, and bitmap. Theindex is stored in the nodes of a B+ tree in the following manner:

» Each node of the tree contains one or several index entries. Within anode, index entries are sorted in
increasing order

85

NTFS Concepts

» Each index entry may point to another (sub-)node containing only lower index entries

» Theroot nodeisin the stream of the index root attribute, the other (sub-)nodes are index buffers.

9.5. Interest

When an application reads a directory, NTFS returns alist of file nameswhich is already sorted.

The B+ tree structure (which is used in HPFS too), when built in a balanced way, is far more efficient
than alinear structure to perform afile name lookup in afolder containing alarge number of files.

Although the duplication of the stream of the indexed attribute in an index entry can cost sometime, it is
worthy because you can browse an index without actually opening al the indexed files (FAT and HPFS
do that, too).

In adirectory, the three file attributes: index root, index allocation, and bitmap are named "$130", and a
directory isjust an Index of file attributes whose type is 30. But NTFS has been thought as a database
filesystem, and it can actually create indexes based on any file attribute that is always resident. E.g., you
could create a new file attribute labeled "author name", and sort your files according to that criteria.

10. Concept - File

10.1. Overview

It is composed of attributesincluding its name and its data.

10.2. Attributes

10.2.1.

Table4.17. A filerecord attributes

Type Description Name
0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME filename
0x50 $SECURITY_DESCRIPTOR

0x80 $DATA [Unnamed]

Standard Information

This contains the DOS-style file permission, such as read-only and archive. It al'so contains four differ-
ent types of modification time.

» Filecreation time

» Last modification time

» Last modification time for FILE record

e Last accesstime

86

NTFS Concepts

10.2.2. File Name

The file's name is stored as an attribute, too. A file can have severa filenames. This is Windows' equi-
valent to hard linking files together.

10.2.3. Security Descriptor

This stores all of Windows' permissions. ACLs, ACEs, auditing.

May not exist on Wn2K (std info, $secure)

10.2.4. Data

This, finally, is the actual data of thefile. It, too, is stored in an attribute

unnamed data stream conpul sory (chkdsk will put it back if m ssing)
naned data streans optional (any limt to the nunber?)

10.3. Named Data Streams

access with "jimtxt:streant

Table 4.18. Fictional named data streams

Type Description Name
0x80 $DATA icon
0x80 $DATA author

10.4. Summary Information

Windows 2000 introduced the idea of summary information on files. This information is stored as a set
of four named data streams.

Description

o Title
* Subject
o Category

* Keywords (multi-line)

87

NTFS Concepts

* Comments (multi-line)

Origin

e Source
* Author

* Revision Number

Table 4.19. Summary Information named data streams

Type Description Name

0x80 $DATA {4c8ccl55-6¢le-11d1-8e41-00c04fb9386d}
0x80 $DATA AEDocumentSummarylnformation

0x80 $DATA ~ESehiesnrM kudrfcolaamtykdDa

0x80 $DATA AESummarylnformation

N.B. Three of the names begin with CTRL-E (0x05). Thisis probably to discourage people from reading
the streams directly.

Thefirst stream {4c.. is always empty. Thisis probably just a marker to

Table 4.20. contents of Summary Information named data streams

Data Stream Summary Field Data Type Code
AEDocumentSummaryl nformation Unknownl Numeric? 0x00
Unknown?2 Numeric 0x01
Category ASCII 0x02
NESebiesnrMkudrfcolaamtykdDa Unknown3 Numeric? 0x00
Unknown4 Numeric? 0x01
Source Unicode 0x04
AESummarylnformation Unknown5 Numeric? 0x00
Unknown6 Numeric? 0x01
Title ASCII 0x02
Subject ASCII 0x03
Author ASCII 0x04
Keywords ASCII 0x05
Comments ASCII 0x06
Revision Number ASCII 0x09

11. Concept - File Record

88

NTFS Concepts

11.1. Overview

The MFT is a set of FILE records. Each file of the volume is completely described by one or more of
these FILE Records. File Records are equivalent to inodes in Unix terminology. The first FILE Record
that describes a given file is called the Base FILE record and the others are called Extension FILE Re-
cords.

A FILE Record is built up from a header, several variable length attributes and an end marker (simply
OXFFFFFFFF).

link table to notes

See also: Attributes, Standard Attribute Header, SMFT, $Boot, File, Fixup, Attribute Id, Directory,

11.2. Layout

FILE Record
Header
Attribute

Attribute

End Marker (OXFFFFFFFF)

Table4.21. Layout of afilerecord

Offset |Size (OF] Description
0x00 4 Magic number 'FILE'
0x04 2 Offset to the update sequence
0x06 2 Size in words of Update Sequence Number & Array (S)
0x08 8 $L ogFile Sequence Number (LSN)
0x10 2 Sequence number
0x12 2 Hard link count
0x14 2 Offset to the first Attribute
0x16 2 Flags
0x18 4 Real size of the FILE record
0x1C 4 Allocated size of the FILE record
0x20 8 File reference to the base FILE record
0x28 2 Next Attribute Id
O0x2A 2 XP Align to 4 byte boundary
0x2C 4 XP Number of thisMFT Record
2 Update Sequence Number (@)
252 Update Sequence Array (a)

(8) The offset to these two fields depends on your operating system.

89

NTFS Concepts

$L ogFile Sequence Number (LSN)

Thisis changed every time the record is modified.

Sequence Number

Number of times this mft record has been reused.

N.B. The increment (skipping zero) is done when thefile is deleted.

N.B. If thisis set to zero it is |ft as zero.

Hard Link Count

Number of hard links, i.e. the number of directory entries referencing this record.

N.B. Only used in mft base records.

Flags

Table 4.22. Filerecord flags

Flag Description

0x01 Record isin use
0x02 Record isadirectory
0x04 Don't know

0x08 Don't know

Real / Allocated Size

The Allocated Size is how much space the Record takes up on disk. This should be a multiple of the
cluster size and should probably be equal to the size of an MFT File Record. The Rea Sizeis a count of
how many bytes of the Record are actually used.

N.B. The Real Size will be padded to an 8 byte boundary.

Base MFT Record

Thisis zero for Base MFT Records. When it isnot zero it isaMFT Reference pointing to the Base MFT
Record to which this Record belongs. The Base Record contains the information about the Extension
Record. Thisinformation is stored inan ATTRIBUTE_LIST attribute.

Next Attribute Id

The Attribute Id that will be assigned to the next Attribute added to this MFT Record.

N.B. Incremented each timeit is used.

N.B. Every timethe MFT Record is reused this Id is set to zero.

N.B. The first instance number is always 0.

The master file table record consists of a header and the attribute list. It has a size of 400 (=1K), or the
cluster size (whichever islarger). The header has the following fields:

90

NTFS Concepts

11.3. Notes

The attribute list is of variable length and terminated with FFFFFFFF. For 1K MFT records, the attribute
list starts at offset 0x30.

The sequence nunber is a circular counter (skipping 0) describing how many
times the referenced nft record has been (re)used. This has to match the

sequence nunber of the nft record being referenced, otherw se the reference
is considered stale and renoved (FIXME: only ntfsck or the driver itself?).

If the sequence nunber is zero it is assumed that no sequence number
consi stency checki ng shoul d be performed.

FI XME: The nft zone is defined as the first 12% of the volune. This space is
reserved so that the nft can grow contiguously and hence doesn't becone
fragnented. Vol une free space includes the enpty part of the nft zone and
when the volune's free 88% are used up, the nft zone is shrunk by a factor
of 2, thus making nore space available for nore files/data. This process is
repeated everytinme there is no nore free space except for the nft zone until
there really 1s no nore free space.

The nft record header present at the beginning of every record in the nft.
This is followed by a sequence of variable Iength attribute records which
is termnated by an attribute of type $END which is a truncated attribute
in that it only consists of the attribute type code $END and none of the

ot her nenbers of the attribute structure are present.

When (re)using the nft record, we place the update sequence array at this
of fset, i.e. before we start with the attributes. This al so makes sense,
otherwi se we could run into problens with the update sequence array
containing initself the last two bytes of a sector which would nean that
multi sector transfer protection wouldn't work. As you can't protect data
by overwiting it since you then can't get it back...

When readi ng we obviously use the data fromthe ntfs record header.

The sequence of attributes part

This is a sequence of file attributes that has a variable length. In each FILE record, the sequence is
ordered by increasing order of the attribute type. The sequence is terminated with FF FF FF FF.

Si ze defined in $Boot.

A FILE record is 1 KB large or the cluster size if larger (as far as Helen is
concerned, its maxinmumsize is 4 KB, but Wndows NT 4 linmt is 64 KB). It fall
2 parts:

Extension FILE records are used when all information about a file doesn't fit into the base FILE record
(e.g. if the sequence of file attributes grows because the file has alot of file attributes or because the data
attribute of the file has a long runlist because its stream is very fragmented). Only the base FILE record
is used for referencing the file it describes. Since the type of the Attribute List file attribute is small
enough, we are sure that this file attribute will be in the base FILE record. And this file attribute
provides the references to al the extension FILE records describing the file.

When afileis deleted, NTFS can't smply remove the associated FILE records from the MFT, otherwise
FILE record numbers wouldn't be constant over time, and all file references would have to be updated!
Instead, the in-use flag of a FILE record indicates when it is no longer in use. When afileis created, an
unused FILE record can be re-used for it, but its sequence number is incremented by one. This mechan-

91

NTFS Concepts

ism allow NTFSto check that file references don't point to deleted files.
seqg num = inode for 0x00 < i < 0x10 (inode O (MFT) has seq num of 1)
see also attribute id page and file reference page

flags 1 in use, 2 dir, 4 ???, 8??? (4+8 ARE used)

12. Concept - File Reference

12.1. Overview

A uniqueidentifier for a FILE record in the MFT.

12.2. Layout

Table 4.23. Layout of afilereference

Offset Size Description
0x00 6 FILE record number
0x06 2 Sequence humber

12.3. Notes

12.3.1. Sequence number

If the filesystem is consistent, this number must match the sequence number of the FILE record refer-
enced by the FILE record number.

nft references (aka file references or file record segnent references) are
used whenever a structure needs to refer to a record in the nft.

A reference consists of a 48-bit index into the nft and a 16-bit sequence
nunber used to detect stale references.

when is the seq numincrenented

13. Concept - Filename Namespace

13.1. Overview

Old versions of the FAT filesystem had strict limits on filenames. Many characters were forbidden, and
the length was restricted to 11 characters (a small namespace). Newer versions of FAT alowed more
characters and longer filenames. NTFS has ailmost no restrictions.

92

NTFS Concepts

Filenames are given a flag to show which namespace the name belongs to. In order to support old ap-
plications, NTFS allocates a short DOS-friendly name to any file with an DOS-incompatible name.

13.2. Possible Namespaces

0: POSIX

Thisisthe largest namespace. It is case sensitive and allows all Unicode characters except for NULL (0)
and Forward Slash '/'. The maximum name length is 255 characters. N.B. There are some characters, e.g.
Colon "', which are valid in NTFS, but Windows will not allow you to use.

1: Win32

Win32 is a subset of the POSIX namespace and is case insensitive. It uses all the Unicode characters,
except: "' xS\ NLB. Names cannot end with Dot '.', or Space "

2: DOS

DOS is a subset of the Win32 namespace, allowing only 8 bit upper case characters, greater than Space
", and excluding: ™" =" =TSV NLBL Names must match the following pattern: 1 to 8
characters, then ', then 1 to 3 characters.

3: Win32 &DOS

This namespace means that both the Win32 and the DOS filenames are identical and hence have been
saved in this single filename record.

To convert a POSIX or Win32 filename to a DOS-friendly filename, follow these steps:

1. Remove all Unicode characters

2. Removeall " but thelast oneif it is not the first character

3. Uppercase all letters

4. Remove forbidden characters

5. Truncate everything before the potential ".' to 6 characters, and add the string "~1"

6. Truncate everything after the potential '.' to 3 characters
7. While the name aready exists, increment the string "~1"

8. N.B. Step 7 means that although the generated DOS name is unique, it is impossible to deduce it
from the Win32 name only.

14. Concept - Fixup

14.1. Overview

The smallest unit of disk space that NTFS uses is a Cluster. This can vary from one sector to 128 sec-
tors, the usual number is 8 (4KB). Naturally this is dependent on the sector and Cluster. sizes declared in
$Boot.

Because a single sector could fail, it'simportant for NTFS to be able to detect errorsin a cluster. For this

93

NTFS Concepts

purpose the sectors have Fixups, which are kept in an Update Sequence Array.

Many important Metadata Records use fixups to protect data integrity

* FILE Recordsinthe SMFT
* INDX Recordsin directories and other indexes
» RCRD Recordsin the $LogFile

¢ RSTR Recordsin the $LogFile

14.2. What Does It Do?

The header of each of these records contains a Update Sequence Number and a buffer. The last two
bytes of each sector of the record are copied into the buffer and the Update Sequence Number is written
in their place.

When the record is read, the Update Sequence Number is read from the header and compared against the

last two bytes of each sector. If it succeeds, then it copies the bytes in the buffer back to their original
places.

14.3. Example

Here's an example before the fixup is applied, with a cluster size of 2KB (4 Sectors).

Table 4.24. Fixup example: before

Offset Data Description
0x0000 Header
0x0028 CD |AB Update Sequence Number

0x002A 00 00 00 00 00 00 00 00 Update Sequence Array

0x01F8 11 12 13 14 15 16 17 18 End of Sector 1
0x03F8 21 22 23 24 25 26 27 28 End of Sector 2
0x05F8 31 32 33 34 35 36 37 38 End of Sector 3

94

NTFS Concepts

0x07F8

41

42

43

44

45

46

47

48

End of Sector 4

Here the Update Sequence Number is OXABCD and the Update Sequence Array is still empty.

Table 4.25. Fixup example: after

Offset Data Description

0x0000 Header

0x0028 CD |AB Update Sequence Number
0x002A 17 18 27 28 37 38 47 48 Update Sequence Array
O0x01F8 11 12 13 14 15 16 CD |AB |Endof Sector 1

0x03F8 21 22 23 24 25 26 CD |AB |End of Sector 2

Ox05F8 31 32 33 34 35 36 CD |AB |Endof Sector 3

0x07F8 41 42 43 44 45 46 CD |AB |End of Sector 4

The last two bytes of each sector have been copied into the Update Sequence Array, and the Update Se-
guence Number has been written over the last two bytes of each sector.

14.4. The Details
14.4.1. Writing

Before writing a fixup-protected record:

1. Add one to the Update Sequence Number (0x0000 must be skipped)

For each sector, copy the last two bytes into the Update Sequence Array

2.
3. Write the new Update Sequence Number to the end of each sector
4.

Write the record to disk

95

14.4.2.

NTFS Concepts

Reading

When reading a fixup-protected record:

1. Readtherecord from disk

2. Check the magic number is correct

3. Read the Update Sequence Number

4. Compareit against the last two bytes of every sector

5. Copy the contents of the Update Sequence Array to the correct places

6. If any of the checks fail when reading, it could mean there is: a bad sector, disk corruption or afault

in thedriver.

15. Concept - Index Header

15.1. Overview

Every Index Record has a standard header and a set of blocks containing an Index Key and Index Data.

The size of an Index Record is defined in $Boot and always seems to be 4KB.

15.2. Layout

15.2.1.

Standard Index Header

Table 4.26. Layout of a Standard Index Header

Offset Size Description

0x00 4 Magic number 'INDX'

0x04 2 Offset to the Update Sequence

0x06 2 Sizein words of the Update Sequence Number & Array (S)
0x08 8 $L ogFile sequence number

0x10 8 VCN of thisINDX buffer in the Index Allocation
0x18 4 Offset to the Index Entries (a)

0x1C 4 Size of Index Entries (a)

0x20 4 Allocated size of the Index Entries (a)

0x24 1 1if not leaf node (b)

0x25 3 Padding (always zero)

0x28 2 Update sequence

Ox2A 252 Update sequence array

(a) These values are relative to 0x18
(b) Has children

96

NTFS Concepts

15.3. Notes

15.3.1. List of Common Indexes

Table4.27. List of Common | ndexes

Name Index Of Description

$130 Filenames Used by Directories
$SDH Security Descriptors $Secure

$Sl Security Ids $Secure

$0 Object Ids $ObjlId

$0 Owner Ids $Quota

$Q Quotas $Quota

SR Reparse Points $Reparse

15.3.2. Other Information

There is no information contained in the Index Record describing what the index is storing (this is kept
in the Index Root).

16. Concept - Index Record

16.1. Overview

This is only applicable to a file index ($I30)
i ndx hel p describe as "index = key + data"

ficult to work out what's

given an INDX record, it's diffic
[t he i ndex root)

i f
bei ng i ndexed (that infois in

16.2. Definition

Thisis a sub-node of the B+ tree that implements an index (e.g. adirectory). It is stored in the stream of
the index allocation attribute associated to the index it belongs to.

16.3. Layout

An INDX buffer is at least 2 KB large or the cluster size if larger (this seems to be a per-index paramet-
er). It fallsinto 2 parts:

16.3.1. The header part

this ISN'T just the header...

Table 4.28. Layout of an Index record header

97

NTFS Concepts

Offset Size Description

~ ~ Standard Index Header

0x00 8 MFT Reference of thefile

0x08 2 Size of thisindex entry

Ox0A 2 Offset to the filename

0x0C 2 Index Flags

O0x0E 2 Padding (align to 8 bytes)

0x10 8 MFT File Reference of the parent
0x18 8 File creation time

0x20 8 Last modification time

0x28 8 Last modification time for FILE record
0x30 8 Last accesstime

0x38 8 Allocated size of file

0x40 8 Real size of file

0x48 8 File Flags

0x50 1 Length of filename (F)

0x51 1 Filename namespace

0x52 2F Filename

2F+0x52 P Padding (align to 8 bytes)
P+2F+0x52 8 VCN of index buffer with sub-nodes

N.B. the filenane is not null term nated

surely the flags can't be 8 bytes |ong

table for the flags

VCN of ib only exists when flags&l

| ast entry has a size of 0x10 (just |arge enough
for the flags (and a nft ref of zero))

16.3.2. The sequence of index entries part

Thisis a sequence of index entries similar to the one found in the index root attribute.

The index entry has the following structure:

Index entry flags (16-bit).

| NDEX_ENTRY_NODE = cpu_to_lel6(1), This entry contains a sub-node
i.e. areference to an index
block in formof a virtua
cluster nunber (see bel ow).

| NDEX ENTRY END = cpu_to |el6(2), This signifies the last entry in
an index block. The index entry
does not represent a file but it
can point to a sub-node.

This is an index entry. A sequence of such entries foll ows each | NDEX HEADER
structure. Together they nmake up a conplete index. The index follows either
an index root attribute or an index allocation attribute.

98

NTFS Concepts

NOTE: Before NTFS 3.0 only filenanme attributes were indexed.

Most entries are not valid (and present) if the entry is the last one. This entry does not represent a file
and is used only for subnodes. The pointer to the subnode buffer is only present if the entry has sub-
nodes.

17. Concept - Links

17.1. Overview

17.2. Interest
NTFS doesn't manage POSIX symbolic links. Nevertheless, this file attribute let us think that NTFS will

manage symboalic links (or Reparse point, in Microsoft terminology) in Windows NT 5.0, like all mod-
ern Unix filesystems (e.g. Ext2, the Linux filesystem) do.

17.3. Questions

What is the role and the layout of the stream of thisfile attribute?

NTFS represents POSI X-style hard links as files with multiple filenane
NTFS represents hard links with nultiple fil enanes.

This is different to one file with nanes in different nanespaces.
Delete a nane froma hard linked file and only the name will be renoved.

18. Concept - Restart

18.1. Overview

Each copy of the restart areais 4KB in size, and has the following structure:

O fset (I ength) Descri ption

0(4) Magi ¢ nunber ' RSTR
1E(12) Fi xup

30(4) LSNa

58(4) LSNb

60(4) LSNc (==LSNa?)

6C(1) Vol une clear flag
78(8) Uni code string ' NTFS

The purpose of the various LSNsis unclear. It appears that the data around offset 3C deal with the clear/
dirty state of the volume, too.

19. Concept - SID

99

NTFS Concepts

19.1. Overview

There are severa SIDs reserved for NT.

link back to sec page

S-1-5-21-646518322-1873620750- 619646970- 1110
S for security id

1 Revision |evel

5 ldentifier Authority (48 bit) 5 = logon id
21 Sub-authority (21 = nt non uni que)

646518322 SA
1873620750 SA dommin id
619646970 SA
1110 user id

Table 4.29. Common well known SIDs

SID Description
S1-5-32-544 Local admin.
S1-1-0 World (everybody)
S1-5-21 NT non-uniqueids

Identifier Authorities

Table 4.30. |dentifier Authorities

Identifier Authority Abbr.
Null SID S1-0
World SID S1-1
Loca SID S1-2
Creator SID S1-3
Non-unique S1-4
NT SID S1-5

Relative Identifiers (RIDs)

These relative identifiers (RIDs) are used with the above identifier
authorities to nake up universal well-known Sl Ds.

Note: The relative identifier (RID) refers to the portion of a SID, which
identifies a user or group in relation to the authority that issued the SID.
For exanple, the universal well-known SID Creator Owmer ID (S-1-3-0) is
made up of the identifier authority SECURI TY_CREATOR SID AUTHORITY (3) and

100

NTFS Concepts

the relative identifier SECURI TY_CREATOR OANER RI D (0).

Relative Identifiers

Table4.31. Relative | dentifiers

Relative I dentifier Code SID

Null 0 S1-0-0
World 0 S1-1-0
Loca 0 S1-2-0
Creator Owner 0 S1-3-0
Creator Group 1 S1-31
Creator Owner Server 2 S1-32
Creator Group Server 3 S1-3-3
Dialup 1 S1-51
Network 2 S1-5-2
Batch 3 S1-5-3
Interactive 4 S1-54
Logon Ids 5 S1-55-X-Y
Service 6 S1-5-6
Anonymous Logon 7 S1-57
Proxy 8 S1-5-8
Enterprise Controllers 9 S1-59
Server Logon 9 S1-59
Principal Self 10 S1-5-10
Authenticated User 11 S1-511
Restricted Code 12 S1-5-12
Terminal Server 13 S1-5-13
Local System 18 S1-5-18
NT Non-unique 21 S$1-521
Builtin Domain 32 S1-5-32

Well-known domain relative sub-authority values (RIDS).

Domain Users

Table4.32. Domain Users

Domain User Code
Admin 500
Guest 501
Kerberos Target 502

101

NTFS Concepts

Domain Groups

Table 4.33. Domain Groups

Domain Group Code
Admins 512
Users 513
Guests 514
Computers 515
Controllers 516
Cert Admins 517
Schema Admins 518
Enterprise Admins 519
Policy Admins 520

Domain Aliases

Table4.34. Domain Aliases

Domain Alias Code
Admins 544
Users 545
Guests 546
Power Users 547
Account Ops 548
System Ops 549
Print Ops 550
Backup Ops 551
Replicator 552
RAS Servers 553
Pre W2K Comp Access 554

Universal well-known SIDs

Table 4.35. Univer sal well-known SIDs

SID Abbr.

Null S1-0-0
World S1-1-0
Local S1-2-0
Creator Owner S$1-3-0
Creator Group S1-31

102

NTFS Concepts

SID Abbr.
Creator Owner Server S$1-32
Creator Group Server S1-3-3
Non-unigque IDs S1-4

NT well-known SIDs

Table4.36. NT well-known SIDs

SID Abbr.

NT Authority S1-5
Dialup S1-51
Network S1-52
Batch S1-5-3
Interactive S1-54
Service S1-5-6
Anonymous Logon (Null Logon) S1-5-7
Proxy S1-5-8
Server Logon (Domain Controller) S1-5-9
Self S$1-5-10
Authenticated User S1-5-11
Restricted Code S$1-5-12
Terminal Server S1-5-13
Logon IDs S1-55-X-Y
NT Non-unigque IDs S1-5-21-...
Built-in Domain S1-5-32

20. Concept - Sparse

20.1. Overview

Sparsefiles

fix the data runs page for NT4 (old style)
13 b8 ae 04 ff 00 old

03 b8 ae 04 00 new

bad clus on NT4 sparse data runs use -1!

103

Chapter 5. Epilogue
1. ToDo

Unless otherwise specified, each item isarewrite/ overhaul.

Urgent
» Security
* Log

e |ndex Root
o Attributeld

* FILE Record

Medium

* Crossref $Secure

« Crossref $Quota

+ AttributeList

» Logged Utility Stream

e Compression

» DataRuns

» Directory

* File

* Index Header

¢ |ndex Record

» Sparsefiles

Low

* Res/Non-resin Overview
e Table(P8) sizes

+ Data

* Reparse Point

* File Reference

104

Epilogue

e USN confusion

¢ Remove Links?

¢ Restart
e SID
* Glossary

2. Unanswered Questions

This, final, section of the documentation is the place for all the unanswered questions. Some relate to
Windows' use of NTFS and some are very technical.

Your help is needed to fill in the blanks.

* Why do some Metadata files on NTFS 3.0+ still have Security Descriptors?
On NTFS 3.0+, $Volume, $AttrDef, dot and $Boot have Security Descriptors. Is this to save time at
boot up? Perhaps to reduce the number of files it has to parse? Or is this the same as the previous
question?
* $STANDARD_INFORMATION: Max Versions, Version Number and Class |d?
Are any of the three fields used?
o Is$UsnIrnl's $J Data Stream a fixed size?
Isit afixed size? Does it wrap around like $L ogFile?
* What does $UsnJrnl's $Max Data Stream do?
There's atime stamp, two fields that might be flags and afield that might be alength.
» Attribute Header
When is"Initialised" not the same size as "Real"?
* $MountMgrDatabase
What is the format of this stream?

 MFT (FILE) Records

Will we only see MFT Extension records with inodes <237 Is the sequence number always equal to
the inode number for the Metadata?

MFT Mirr

How largeisthisif the cluster sizeis greater than 4kB?
* Index Records

Arethey always 4kB?

e Collation

105

Epilogue

Isacollation type ULONGS equivaent to GUID?

e Security Descriptors

How are ACEs inherited?

ToDo: copy questions to relevant pages and x-link.

3. History

Version 0.6

» Conversion to DocBook:

Reordering files as chapters and sections.
Removed/Reauthored paragraphs related specifically to the html format.
Titled sections and tables.

Line breaks became new paragraphs or removed.

* Presentation changes:

Moving "Notes" and "Other information™ to the bottom of each section.
Removed illustrations from the Tree concept (will be returned in the future).
Removed empty sections.

Data Runs examples are described now in tables.

Version 0.5

* New:

Added alink to the NTFS FAQ.

Added the tree concept.

» Tidied, Fixed or Rewritten:

Fixed the 3rd data run example.

Add directory & Index View flags to the FileName attribute.
More info about Reparse Paints.

More info about Susnjrnl.

Updated $boot.

Updated $mftmirr.

106

Epilogue

» Updated Security Descriptor attribute.
« Fixed aminor error in the attribute header concept.
» Fixed aminor error in thefile record concept.
« Fixed atypein the clusters concept.
* Updated the thanks page.
e HTML Improvements:
* Added anicon to the html meta
« Moved the help menu to the front page
* Added the SF logo and a copyright to the footer
e Change the contact email to apicture.
* Removed alink from the glossary to the obsolete property _set page.
» Removed the contact info from the footer
» Fixed alink to sourceforge (removed the www. prefix).
e CSSupdates.

* Whitespace cleanup

Version 0.4

* New:
e List of al Data Streams and Indexes
e Pages: About, Collation and SID
¢ (Some) info about XP
» Info about $Q, $O and $R
* Info about the MFT Zone
e Moreinfo about Indexes
e Load of new Glossay entries
» Tidied, Fixed or Rewritten:
e Standard Information, Filename, Fixup
e Standardise naming of the four time fields
« Standardise naming of the three file size fields

e Minor improvements to Bitmap and Quota

107

Epilogue

* HTML Improvements:
o Standardised tables
< Footnote links on every page: Validate HTML, CSS and Online
« Next/ Prev links cycle through the index
e Better CSS compliance
¢ Added keywords to aid search engines

* Tweaked fonts

Version 0.3

* Worked in Anton's header files
* New pagefor Collation

* New page for Index Header

* New page for $Usndrnl

» Reworked Index Record page
e New info for $Objld

* New info for $Quota

» New info for $Secure

* New info for $Reparse

e $MountMgrDatabase added to dot
* Reworked $MFT page

» Lotsof tidying up

Version 0.2

» Put everything under CVS control on SourceForge

» Added $Id CVStag to the end of every file

e Added full path to the beginning of every file

» Fixed up CSS so old version of Netscape should look OK
» Updated $AttrDef

e Updated $EA

« Updated $EA_INFORMATION

108

Epilogue

* Updated $FILE_NAME

» Updated $STANDARD_INFORMATION
e Updated $VOLUME_INFORMATION

* Wrote entries for al the glossary items

» Accesskeysfor Previousand Next , and .

» Fixed lots of typos

Version 0.1

» First public release, based on the very old "original docs"

109

Appendix Appendix I. License

1. GNU Free Documentation License
1.1. Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

1.2. 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document free in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modify-
ing it, either commercially or noncommercialy. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License isakind of copyleft, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this Li-
cense principally for works whose purpose isinstruction or reference.

1.3. 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The Document, below, refers to any such
manual or work. Any member of the publicisalicensee, and is addressed as you.

A Modified Version of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or trand ated into another language.

A Secondary Section is a named appendix or a front-matter section of the Document that deals exclus-
ively with the relationship of the publishers or authors of the Document to the Document's overall sub-
ject (or to related matters) and contains nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The Invariant Sections are certain Secondary Sections whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Document is released under this License.

The Cover Texts are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A Transparent copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and

110

License

straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic trandation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readersis not Transparent. A copy that is not Transparent is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opague formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The Title Page means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, Title Page means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

1.4. 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License appliesto the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute alarge enough number of copies you must aso follow the conditionsin section 3.

Y ou may aso lend copies, under the same conditions stated above, and you may publicly display copies.

1.5. 3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. Y ou may add other materi-
a on the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(asmany asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document humbering more than 100, you must either
include a machine-readable Transparent copy along with each Opague copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public has access to down-
load anonymously at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opague copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing

any large number of copies, to give them a chance to provide you with an updated version of the Docu-
ment.

1.6. 4. MODIFICATIONS

111

License

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the Mod-
ified Version filling the role of the Document, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

o v A

10.

11.

12.

13.

14.

Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that ver-
sion gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum be-
low.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

Include an unaltered copy of this License.

Preserve the section entitled History, and itstitle, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If thereis no section
entitled History in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous ver-
sions it was based on. These may be placed in the History section. Y ou may omit a network loca-
tion for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refersto gives permission.

In any section entitled Acknowledgements or Dedications, preserve the section's title, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedic-
ations given therein.

Preserve dl the Invariant Sections of the Document, unaltered in their text and in their titles. Sec-
tion numbers or the equivalent are not considered part of the section titles.

Delete any section entitled Endorsements. Such a section may not be included in the Modified Ver-
sion.

Do not retitle any existing section as Endorsements or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified

112

License

Version's license notice. These titles must be distinct from any other section titles.

You may add a section entitled Endorsements, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

1.7. 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of al of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titlesin the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections entitled History in the various original documents,
forming one section entitled History; likewise combine any sections entitled Acknowledgements, and
any sections entitled Dedications. Y ou must delete all sections entitled Endor sements.

1.8. 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this Li-
cense, and replace the individual copies of this License in the various documents with a single copy that
isincluded in the collection, provided that you follow the rules of this License for verbatim copying of
each of the documentsin all other respects.

You may extract a single document from such a collection, and distribute it individually under this Li-
cense, provided you insert a copy of this License into the extracted document, and follow this Licensein
all other respects regarding verbatim copying of that document.

1.9. 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an aggregate, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on

113

License

covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

1.10. 8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute translations of the Document un-
der the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You may include a trandation of this License
provided that you also include the original English version of this License. In case of a disagreement
between the trandlation and the original English version of this License, the original English version will
prevail.

1.11. 9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for un-
der this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties re-
main in full compliance.

1.12. 10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License or any later version applies to it, you have the option of fol-
lowing the terms and conditions either of that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the Document does not specify a version num-
ber of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

114

Glossary

Thisisaglossary of all terms.

Some entries refer to other entries, e.g. See also.

Some entries have an entire page of their own, e.g. More...

Glossary

. (See Dot, Root Directory)

Access Control Entry (ACE)

Access Control List (ACL)

ACE (See Access Control
Entry)
ACL (See Access Control List)

$AttrDef

Attribute

SATTRIBUTE_LIST

Audit, Auditing

B+ Tree

See Dot, Root Directory.

An Access Control Entry is the smallest unit of security. It contains
a SID (either auser or agroup) and permissions information.

The permission will be one of Access Allowed, Access Denied or
System Audit. This object has flags to determine how the permis-
sions should be inherited.

See Also Security ldentifier (SID), Access Control List (ACL),
Audit, Auditing.

This security structure contains alist of ACEs.

See Also $SECURITY_DESCRIPTOR, Security Identifier (SID),
Access Control List (ACL), Audit, Auditing.

See Access Control Entry (ACE).

See Access Control List (ACL).

This metadata file contains the definitions of all the attributes that
are allowed on an NTFS volume.

(More...)

on disk afileis stored as a set of attributes resident / non res

This attribute is used when a file's attributes won't fit in a single
MFT File Record. It has a list of al the attributes and where they
can be found.

The SATTRIBUTE_LIST isaways stored in the Base FILE Record.

(More...)
See Also FILE Record, SMFT, Base FILE Record.

As part of the security permissions of a file, any actions performed
on the file can be recorded.

For example a file could be required to log all the people who tried
to read it, but didn't have the permissions to do so.

A B+ treeisavariant of the binary tree.
Instead of one data element per node, there are many.

In NTFS the actual number depends on the lengths of the names and

115

Glossary

BAAD

$Bad

$BadClus

Balanced Tree

Base FILE Record

Binary

Binary Tree

the cluster size).

The B+ tree retains the efficiency of a binary tree and also performs
well with large numbers of data elements (because the tree tends to
grow wide rather than deep).

See Also Binary Tree, Balanced Tree.

During chkdsk, if NTFS finds a multi-sector item (MFT, INDEX
BLOCK, etc) where the multi-sector header doesn't match the values
at the end of the sector, it marks the item with the magic humber
'BAAD', and fill it with zeroes (except for a short at the end of each
sector...)

Fl XMVE

"BAAD' == corrupt record
"CHKD' == chkdsk ?7??
"FILE'" == nft entry
"HOLE" == ??? (NTFS 3.0+7?)
"I NDX" == index buffer
RSTR & ???

See Also chkdsk, fsck.

This is the named Data Stream representing bad clusters on a
volume.
See Also $BadClus.

This metadata file lists all the unreadable clusters on the volume.
(More...)

Often binary trees can become very uneven. By reorganising the
data, the tree can be balanced such that no a node has similar num-
bers of children to it'sleft and right.

See Also B+ Tree, Binary Tree.

If the attributes don't fit into a single MFT record then the Base
FILE Record holds enough information to locate the other records.
See Also SATTRIBUTE_LIST, FILE Record, $MFT.

Maths carried out in base two. In this documentation, certain flags
fields are represented in binary, for the sake of clarity.

e.g. 00001000 o 010000000 o
See Also Decimal, Hex, Hexadecimal, Units.

Thisis an efficient way of storing sorted datain order.
Each node in the tree represents a data element.

The left child node is a collection of all the elements that come be-
foreit.

The right child node is a collection of al the elements that come
after it.
See Also B+ Tree, Balanced Tree.

116

Glossary

Bit

$Bitmap

$BITMAP

Block

$Boot

Byte (See Units)

chkdsk

Cluster

Compression

One binary digit, one or zero.
See Also Units.

This metadata file keeps track of which clusters are in use on the
volume.

(More...)
This attribute keeps track of which records arein usein an index.
(More...)

In Linux terminology, this is a cluster. Block device In Linux ter-
minology, thisis a storage unit.

Cluster is the minimum allocation unit.

Clusters are a fixed power of 2 of the sector size (called the cluster
factor), and their size can be between 512 bytes and 4 KB
(Sometimes 64 KB, but 4 KB is the largest cluster size that the cur-
rent NTFS compression engine can operate with.

That limit may be related to the 4 KB page size used on the Intel
i386 CPU).

This size can be set with the Windows NT format utility, whose de-
fault is: Volume size Cluster size 1 to 512 MB Sector size 512 MB
to1GB 1KB 1GBto2 GB 2 KB morethan 2 GB 4 KB
This metadata file points at the boot sector of the volume.

It contains information about the size of the volume, clusters and the
MFT.

(More...)
See Units.
ThisisaDOS and Windows utility to check and repair filesystems.

Its name is an abbreviation of check disk.
See Also fsck.

This is the smallest unit of disk that NTFS uses and it is a multiple
of the sector size.

It is determined when the volume is formatted and cannot be altered
afterwards.
See Also Sector, $Boot, Volume.

NTFS supportsfile- and directory-level compression.

The compression is performed transparently when the file is read or
written.

Any new filesin a compressed directory will automatically be com-
pressed.
See Also Compression Unit.

117

Glossary

Compression Unit

$DATA

Data Runs

Decima

Directory

DOS File Permissions (see File
Permissions)
Dot, Root Directory

Drive (See Volume)

Dynamic Disk

$EA

Each file marked to be compressed is divided into sixteen cluster
blocks, known as compression units.

If one of these blocks cannot be compressed into fifteen clusters or
lessit isleft uncompressed.

This division also helps accessing a file randomly, ie it isn't neces-
sary to decompress the whole file.

See Also Cluster, Compression.

This attribute contains the actual datafor afile.

This stream may also have a name.

(More...)

Non-resident attributes are stored in intervals of clusters called runs.
Each run is represented by its starting cluster and its length.

The runs map the VCNs of afile to the LCNs of avolume.

(More...)

See Also Attribute, Cluster, Logical Cluster Number (LCN), Virtual
Cluster Number (VCN), Volume.

Maths carried out in base ten.

In this documentation, numbers that are neither in hex, nor binary,
arein decimal, e.g. 16 (sixteen), 23 (twenty-three).

See Also Binary, Hex, Hexadecimal, Units.

An NTFS directory is an index attribute. NTFS uses index attributes
to collate file names.

A directory entry contains the name of the file and a copy of the
file's standard information attribute (time stamp information).

This approach provides a performance boost for directory browsing
because NTFS does not need to read the files MFT records to print
directory information.

(More...)

See File Permissions.

Root directory of the disk

(More...)

See Volume.

Dynam c di sk SDS, w n2k

This attribute is used to implement the HPFS extended attribute un-
der NTFS.

118

Glossary

$EA_INFORMATION

$EFS

$Extend

File

$FILE_NAME

Filename Namespace

File Permissions

FILE Record

It isonly used for OS2 compatibity.
(More...)

This attribute is used to implement the HPFS extended attribute un-
der NTFS.

Itisonly used for OS2 compatibity.

(More...)

$EFSis the named $LOGGED_UTILITY_STREAM of any encryp-
tsegleﬁAlleéo $LOGGED_UTILITY_STREAM.

This metadata directory contains the metadata files:

e $0bjid
* $Quota
e $Reparse

(More...)

In the NTFS terminology, afile can be a normal file, directory (like
in Linux) or asystemfile.

(More...)

This attribute represents the file's name.

A file can have one or more names, which can bein any directory.
Thisisthe NTFS equivalent to Unix's hard links.

(More...)

Not all charactersare valid in DOS filenames.

For compatibity NTFS stores which namespace the name bel ongs to.
(More...)

NTFS supports the standard set of DOS file permissions, namely
Archive, System, Hidden and Read Only.

In addition, NTFS supports Compressed and Encrypted.
See Also $SECURITY_DESCRIPTOR, Compression.

The $MFT is made up of FILE records, so named because of a ma-
gic number of FILE.

Each record has a standard header and alist of attributes.

If the attributes don't fit into a single record, then more records will
be used and a$SATTRIBUTE_LIST attribute will be needed.

119

Glossary

See Also Attribute, SATTRIBUTE_LIST, Magic Number, SMFT.

File Record Segment (FRS)
FRS = MFT File Record

File Reference Each file record has a unique number identifying it.

The first 48 bits are a sequentialy alocated number which is the
offset in the SMFT.

Thelast 16 bits are a sequence number.
Every time the record is altered this number is incremented.

The sequence number can help detect errors on the volume.
See Also FILE Record, $MFT, Volume.

File Runs (See Data Runs) See Data Runs.
File Size There are three file sizes that NTFS records.

Each of them stores the number of bytes.

* R) Real. The number of bytes of data.

* A) Allocated. The size taken up on disk.

*) Initialised. Size of compressed file.

If the file is compressed, the Initialised Size may be smaller than the
Real Size.

Filesystem The physical structure an operating system uses to store and organ-
ize files on a storage unit.

A commonly used filesystem is FAT (used by DOS).
Fixup (See Update Sequence) See Update Sequence.

Fork (See Resource Fork) See Resource Fork.

Fragmented (un)f file

FRS (See File Record Seg- See File Record Segment (FRS).

P;Jceﬂt) Thisisautility to check and repair filesystems.
Its nameis an abbreviation of filesystem check.

GB (See Units) See Units.

GUID (See Units)
The valid format for a QU D is {XXXOOXK- XXXK- XXXX- X
G obally Unique ldentifier (GUJ D)

120

Glossary

Hex, Hexadecima

HFS (See Hierarchica File
System)
Hierarchica File
(HFS)

High Performance File System
(HPFS)

System

HPFS (See High Performance
File System)
$I130

Index

$INDEX_ALLOCATION

$INDEX_ROOQOT

QUI D structures store globally unique identifiers (C
128-bit val ue consisting of one group of eight hexad
by three groups of four hexadecimal digits each, fol
twel ve hexadecimal digits. GUDs are Mcrosoft's inp
di stributed conputing environment (DCE) universally
Exampl e of a GUID:

1F010768- 5A73- BC91- 0010A52216A7

order stored on disk?

01020304- 0506- 0708- 090A0BOCODOEOF010

0x00
0x04
0x06
0x08

04030201

0605

0807
090A0BOCODOEOF010

Maths carried out in base sixteen.

In this documentation, many numbers represented in hex, e.qg.
0x02EQ, 0xF100.

See Also Binary, Decimal, Units.

See Hierarchical File System (HFS).

The MacOS filesystem.

The OS2 filesystem.

Remember: once upon a time, OS2 had to be the operating system
developed by both IBM and Microsoft.

There was a break between the 2 giants. IBM continued to develop
0S/2 (it became 0S/2 Warp), and that explains why OS/2 knows
how to execute Windows applications. Microsoft decided to make
its own operating system: Windows NT.

HPFS design influenced NTFS design, so the 2 filesystems share
many features.

See High Performance File System (HPFS).
Thisisthe named index used by directories.

The name refers to attribute 0x30 ($FILE_NAME).
See Also Attribute, Directory, $FILE_NAME, Index.

just the whole index idea)

This attribute contains the location of the entries that make up an in-
dex.

(More...)
This attribute is the root of an index.

Theindex is stored as a balanced binary tree.

121

Glossary

INDX Record

Infinite Logging Area

Inode

$J

Junction Point
KB (See Units)
LCN (See Logica Cluster

Number)
Log Record

$LogFile

The only attribute which is indexed is $FILE_NAME and the index
is called $130.

(More...)

Index records are used by directories, $Quota, $Reparse and
$Secure.

The contents depend on the type of index being kept.
Directories store $FILE_NAME attributes.

(More...)
See Also Directory, $130, $Quota, $Reparse, $Secure.

Something contained in $LogFile. It consists of a sequence of 4KB
log records.
See Also $LogFile.

An inodeisthe filesystems representation of afile, directory, device,
etc.

In NTFS every inode it represented by an MFT FILE record.
See Also Directory, File, FILE Record, Filesystem.

$Jisanamed data stream of the Metadata File $UsnJrnl.
See Also $Usndrnl.

Microsoft term for a mount point, available in NT 5.0.
See Units.
See Logical Cluster Number (LCN).

One 4KB chunk of the infinite logging area. It starts with the magic
number 'RCRD' and a fixup, then has undocumented variable length
data. [The log record might be further subdivided - | cannot imagine
they waste 4KB if they only have to log a few bytes. Custer men-
tions high level and low level 'records. High level are: - allocate in-
ode n, - make a directory entry foo in directory m low level are: -
modify inode n with the new contents of <1KB>]

This metadata file is used to guarantee data integrity in case of asys-
tem failure.

It has two copies of the restart area and the infinite logging area.

The log file is near the centre of the volume, just after the second
cluster of the boot file. [Better say 'run’ than cluster. The boot file
usually extends over severa clusters at the beginning of the disk,
and then has a single run of just one cluster (the copy of the boot
sector). Also, isn't it 'infinite'?]

Transactional logging file

(More...)

122

Glossary

AM

Logical Cluster ~ Number

(LCN)

Logica Sequence Number
(LSN)

LSN (See Logical Sequence
Number)

Magic Number

Master File Table

$Max

MB (See Units)

Metadata

SMFT

SMFTMirr

This attribute is used by encrypted files.

(More...)

A volume is divided into clusters. They are numbered sequentialy,
starting at zero.

See Also Cluster, Volume.

A seria number used to identify an NTFS log record.

See Logical Sequence Number (LSN).

Most of the on-disk structures in NTFS have a unique constant
identifying them.

This number is usually located at the beginning of the structure and
can be used as a sanity check.

See Master File Table.

$Max is anamed Data Stream of $UsnJrnl.
See Also $UsnJrnl.

See Units.

Data on the storage unit used by the filesystem only, as a frame to
access user data.

M etadata constitutes the structure of the filesystem).

Metadata examples from various filesystems include FATSs, inode
tables, free block lists, free block bitmaps, logging areas, and the su-
perblock.

net a- dat a

Dat a about data.
t hat
within an application or environment.

In data processing,

For exanpl e,
attributes, (nane, size,
data structures (Il ength,
(where it

data type,
fields,
is located, how it

(col unms,
i's associ at ed,

data may include descriptive information about the
characteristics of the data.

and condition, or

This metadata file, the Master File Table, is an index of al the files
on the volume.

It contains the attributes of each file and the root of any indexes.
(More...)
This metadata file stores a copy of the first four records of $MFT.

It is a safety measure which probably only gets used when chkdsk is
run.

123

neta-data is
provi des information about or docunentation o

nmet a data woul d docunent data about d
etc) and data
etc) and

Glossary

$MountMgrDatabase

MST (See Multi-Sector Trans-

fer)
Multi-Sector Transfer

Nibble

NT Authority

NTFS

NT Sub Authority

$0

$OBJECT_ID

$Obj1d

PAM

Partition (See Volume)

Partition Table

(More...)

$MountMgrDatabase is a named Data Stream of dot (the root direct-
ory).

It contains alist of mounted volumes.
See Also Dot, Root Directory.

See Multi-Sector Transfer.

mul tiple sectors, fixup, safety checks

Half of abyte (4 bits).

The NT Authority defines the scope of the security identifier.
Numbers O - 4 represent internal identifiers,

e.g. World, Local. 5 representsthe NT Authority.

See Also NT Sub Authority, Security Identifier (SID),
$SECURITY_DESCRIPTOR.

NTFS is the file system of Windows NT, Windows 2000 and Win-
dows XP.

(More...)
See Also Filesystem.

The Sub Authority can contain any number of fields (fiveis usua).
Sub Authorities beginning with 21 (0x15) denote a NT Domain
identifier.

See Also NT Authority, Security Identifier (SID),
$SECURITY_DESCRIPTOR.

Thisis one of the named indexes belonging to $Quota and $0bjld.
See Also Index, $Q, $0bjld, $Quota.

This attribute stores a mapping between a SID and a Security Hash.
(More...)

This attribute record's the unique identifiers given to files and direct-
orys when using Distributed Link Tracking.

(More...)

Pluggable Authentication Modules (PAM) are a set of libraries for
validating security on Linux.

See Volume.

partition table...

124

Glossary

Permissions

POSIX

$PROPERTY_SET
$Q

$Quota

$R

RCRD Record

Record

Recursion
Reference

$Reparse

$REPARSE_POINT

SFS W n2K dynam ¢ di sk

There are two mechanisms for storing permissionsin NTFS.

One is a superset of DOS File Permissions, which includes Read
Only and Hidden.

The other is based on ACEs and alows granting specific permis-
sionsto specific users.

See Also Access Control Entry (ACE), File Permissions,
$SECURITY_DESCRIPTOR.

An acronym (pronounced like positive) for Portable Operating Sys-
tem Interface, suggested by Richard M. Stallman.

It is aset of international standards (ISO/IEC 9945-1:1996(E), AN-
SI/IEEE Std 1003.1 1996 Edition) to interface with Unix-like ex-
ploitation systems, e.g. Linux.

NTFS does not support Unix-like devicefiles.

An obsol ete attribute (0xFO) from NT4

Thisisone of the named indexes belonging to $Quota.
See Also Index, $O, $Quota.

This metadata file stores information about file quotas.
(More...)

Thisis the named index belonging to $Reparse.
See Also Index, $Reparse.

Thisrecord is used in the $LogFile.

Each represents an atomic transaction that is to be performed.
See Also $LogFile, Transaction.

There are several record typesin NTFS.

FILE Record are used in the $MFT, INDX Records in indexes,
RCRD and RSTR Records in the $LogFile.

See Also FILE Record, INDX Record, RCRD Record, RSTR Re-
cord.

See Recursion.

file (are there any others?)

This metadata file stores information about reparse points.

(More...)

This attribute stores information about reparse points.

(More...)

125

Glossary

Resource Fork

Roll-back

Root Directory (See Dot, Root

Directory)
RSTR Record

Runs (See Data Runs)
$SDH

$SDS

Sector

$Secure

Security

$SECURITY_DESCRIPTOR

In MacOS's filesystem, HFS, files are allowed to have multiple data
streams.

These are called resource forks.
See Also Hierarchical File System (HFS), Stream.

When an NTFS volume is mounted, it is checked to see if itisin a
consistant state.

If it isn't then the $LogFile is consulted and transactions are undone
until the disk returns to a consistant state.

This does not guarantee data integrity, only disk integrity.
See Also $LogFile, Transaction, Volume.

See Dot, Root Directory.
Two copies of thisarein $LogFile.

A restart area has the magic number 'RSTR' followed by a fixup and
some other data, including three LSNSs.

A restart area has a pointer into the log area, such asthe first and last
log records written and the last checkpoint record written. (that is
three - now which iswhich?)

See Data Runs.

Thisis one of the named indexes belonging to $Secure.
See Also Index, $SI1, $Secure.

Thisis the named data stream belonging to $Secure.
See Also $Secure, Stream.

Unit of data on the physical storage unit.
The storage controller can only access datain multiples of this unit.

A sector is usually 512 bytes, but can be 1 KB on certain Asian hard
disks.

This metadata file stores a table of security descriptors used by the
volume.

(More...)
There are two levels of security in NTFS.

There are the DOS File Permissions, such as Read Only and Hidden
and an ACL model which grants specific permissions to specific
uSers.
See Also Access Control Entry (ACE), Access Control List (ACL),
Permissions, $SECURITY_DESCRIPTOR, Security Identifier
(SID).

This attribute stores all the security information about a file or dir-
ectory.

It contains an ACL for auditing, an ACL for permissions and a SID

126

Glossary

Security Identifier (SID)

Sequence Array (See Update

Sequence)
SID (See Security Identifier)

$Sl

Sparse File

$STANDARD_INFORMATI
ON

Stream

$SYMBOLIC_LINK

TB (See Units)

Time Stamp

to show the user and group of the owner.

(More...)

See Also Attribute, Access Control List (ACL), Access Control
Entry (ACE), Security Identifier (SID).

This variable-length identifier uniquely identifies a user or a group
on an NT domain. It is used in the security permissions.

See Also Access Control Entry (ACE), Access Control List (ACL),
$SECURITY_DESCRIPTOR.

See Update Sequence.

See Update Sequence.

Thisisone of the named indexes belonging to $Secure.
See Also Index, $SDH, $Secure.

NTFS supports sparse files. If a file contains large, contiguous,
blocks of zeros, then NTFS can choose to not waste any space stor-
ing these portions on disk.

They are represented as data runs containing nothing.

When read from disk, NTFS simply substitutes zeros.
See Also Data Runs.

This attribute contains information about a file, such as its file per-
missions and when it was created.

(More...)
All dataon NTFS is stored in streams, which can have names.

A file can have more than one data streams, but exactly one must
have no name.

The size of afileisthe size of its unnamed data attribute.

This attribute, like $VOLUME_VERSION existed in NTFS v1.2,
but wasn't used.

It does not longer exist in NTFS v3.0+.
See Units.
NTFS stores four significant times referring to files and directories.

They are: File creation time; Last modification time; Last modifica
tion of the MFT record; Last accesstime.

NTFS stores dates as the number of 100ns units since Jan 1 & 1601.

Unix, stores dates as the number of seconds since Jan 1 ¥ 1970.

standardise 4 tine fields name & description conce

refer to 4 tines as:
C creation

127

Glossary

Transaction

Unfragmented (see Fragmen-
ted)
Unicode

Units

A alter (nodification)
Mnft (nft changed)
R read (Il ast access)

Fl XMVE:

NOTE: There is conflicting information about the n
fields but the nmeaning as defined bel ow has been v
correct by practical experinmentation on Wndows NT
assuned to be the one and only correct interpretat

creation_tine
Time file was created. Updated when a filenane is

| ast _data_change_tine
Time the data attribute was | ast nodifi ed.

| ast_nft_change_tine
Tinme this nft record was | ast nodified.

| ast _access_tinme

Approximate time when the file was | ast accessed (
updated on read-only volunes). In Wndows this is
accessed if sonme tinme delta has passed since the |

N.B. There is conflicting information about the ne

fields but the nmeaning as defined bel ow has been v
correct by practical experinmentation on Wndows NT
assuned to be the one and only correct interpretat

See Also FILE Record.

A transaction on a system is a set of operations (on that system) that
constitutes a unit. This unit can't be divided.

Before the transaction, the state of the system is well defined. Dur-
ing the transaction, it is undefined. After the transaction, it is well
defined again.

A transaction can't be half-realized: if no operation fails, the transac-
tion is realized. If on the contrary an error occurs in one or more of
the operations, the transaction is not realized.

A set of (even atomic) operations is not atomic by definition. A
transaction is a model that provides a kind of atomicity to this set of
operations.

See Fragmented.

International character set coded on 16 bits (ASCII is coded on 7
bits and Latin-1 coded on 8 hits). Unicode can represent every sym-
bol of almost every language in the world.

Every size in this document is measured in bytes (unless clearly
marked).

The abbreviations for sizes are:

128

Glossary

Table 122. M easur ement Units

Abbr.

Name

Exactly Approx.

KB

Kilobyte

270 10°

MB

Megabyte

GB

Gigabyte

230 109

TB

Terabyte

2 40 10 12

$UpCase

Update Sequence

$UsnIrnl

see also Binary, Decimal, Hexadecimal

N.B. Technically, the correct abbreviation for 1024 bytes is KiB,
which stands for kilobinary bytes.

This metadata file contains 128K B of capital letters.

For each character in the Unicode aphabet, there is an entry in this

file.

Itis used to compare and sort filenames.

(More...)

Severa structures in NTFS have sequence numbers in them to check
for consistancy errors.

They are FILE, INDX, RCRD and RSTR records.

Before the record is written to disk, the last two bytes of each sector
are copied to an array in the header.

The update sequence number is then incremented and written to the
end of each sector.

If any disk corruption occurs, this technique could detect it.

The Update Sequence Array (usa) is an array of the
to the end of each sector protected by the update
this array is contained. Note that the first entry
Nunber (usn), a cyclic counter of how many tinmes t
been witten to disk. The values 0 and -1 (ie. Oxf
last _ ul6's of each sector have to be equal to th
are set to it (during witing). If they are not, a
transfer has occured when the data was witten.
The maxi mum size for the update sequence array is
maxi mum si ze = usa_ofs + (usa_count * 2) =
The 510 bytes cones fromthe fact that the last
(obviously) finish before the last _ ul6 of the f
This formula can be used as a consistency check in
(usa_count * 2) has to be less than or equal to 51

See Also FILE Record, INDX Record, RCRD Record, RSTR Re-

cord.

129

Glossary

VCN (See Virtua Cluster
Number)
Virtual Cluster Number (VCN)

Volume

$Volume

$VOLUME_INFORMATION

$VOLUME_NAME

$VOLUME_VERSION

used for | ogging

(More...)
See Virtual Cluster Number (VCN).

When representing the data runs of afile, the clusters are given vir-
tual cluster numbers.

Cluster zero refersto the first cluster of thefile.

The data runs map the VCNs to LCNs so that the file can be located
on the volume.

See Also Cluster, Logical Cluster Number (LCN), Volume.
(=drive=partition) (extended, striped, mirrored (not supported))

A logical NTFS partition. It isagroup of physical partitions (see the
fdisk utility, you can set up mirroring and stripping) that act as one
(somewhat like the Linux md block devices).

This metadata file contains information such as the name, serial
number and whether the volume needs checking for errors.

(More...)

This attribute contains information such as the serial number, cre-
ation time and whether the volume needs checking for errors.

(More...)
This attribute stores the name of the volume in Unicode.
(More...)

This attribute, like $SYMBOLIC_LINK existed in NTFS v1.2, but
wasn't used.

It does not longer exist in NTFS v3.0+.

130

	NTFS Documentation
	Table of Contents
	Chapter 1. Prologue
	1. NTFS Documentation Preface
	2. About the NTFS Documentation
	2.1. Overview
	2.2. Documentation Layout
	2.3. Accuracy
	2.4. Contact Points
	2.5. License
	2.6. Thanks

	3. Tables Legend
	3.1. Overview
	3.2. Footnotes
	3.3. Size Fields
	3.4. Indexes
	3.5. Operating System

	4. Volume Layout
	4.1. Overview
	4.2. Notes
	4.2.1. Other information
	4.2.2. MFT Zone

	Chapter 2. NTFS Attributes
	1. Overview
	1.1. Notes
	1.1.1. Other Information

	2. Attribute - $STANDARD_INFORMATION (0x10)
	2.1. Overview
	2.2. Layout of the Attribute (Resident)
	2.2.1. File Permissions

	2.3. Notes
	2.3.1. Other Information
	2.3.2. Questions

	3. Attribute - $ATTRIBUTE_LIST (0x20)
	3.1. Overview
	3.2. Layout of the Attribute
	3.3. Notes
	3.3.1. $AttrDef
	3.3.2. Other Information
	3.3.3. To Do

	4. Attribute - $FILE_NAME (0x30)
	4.1. Overview
	4.2. Layout of the Attribute (Resident)
	4.2.1. File Reference
	4.2.2. File Size
	4.2.3. Flags

	4.3. Notes
	4.3.1. Other Information

	5. Attribute - $OBJECT_ID (0x40)
	5.1. Overview
	5.2. Layout of the Attribute
	5.2.1. Birth Volume Id
	5.2.2. Birth Object Id
	5.2.3. Domain Id

	5.3. Notes
	5.3.1. Other Information

	6. Attribute - $SECURITY_DESCRIPTOR (0x50)
	6.1. Overview
	6.2. Layout of the Attribute
	6.2.1. Notes
	6.2.1.1. Size

	6.3. Layout of the stream
	6.3.1. Questions
	6.3.2. To Do
	6.3.3. Header

	6.4. ACL
	6.5. ACE
	6.5.1. Types
	6.5.2. Flags
	6.5.3. Access Mask / Access Rights

	6.6. SID (Security Identifier)
	6.6.1. Security Descriptor Control Flags
	6.6.1.1. OWNER DEFAULTED
	6.6.1.2. GROUP DEFAULTED
	6.6.1.3. DACL PRESENT
	6.6.1.4. DACL DEFAULTED
	6.6.1.5. SACL PRESENT
	6.6.1.6. SACL DEFAULTED
	6.6.1.7. SELF RELATIVE

	7. Attribute - $VOLUME_NAME (0x60)
	7.1. Overview
	7.2. Layout of the Attribute
	7.3. Notes

	8. Attribute - $VOLUME_INFORMATION (0x70)
	8.1. Overview
	8.2. Layout of the Attribute
	8.2.1. Flags

	8.3. Notes
	8.3.1. Dirty Flag
	8.3.2. Version numbers
	8.3.3. Other Information

	9. Attribute - $DATA (0x80)
	9.1. Overview
	9.2. Layout of the Attribute
	9.3. Notes
	9.3.1. Common Data Stream Used By Windows
	9.3.2. Other Information

	10. Attribute - $INDEX_ROOT (0x90)
	10.1. Overview
	10.2. Layout of the Attribute
	10.2.1. Index Root
	10.2.2. Index Header
	10.2.3. Flags

	10.3. Notes
	10.3.1. Size
	10.3.2. Sequence of index entries

	10.4. List of Common Indexes

	11. Attribute - $INDEX_ALLOCATION (0xA0)
	11.1. Overview
	11.2. Layout of the Attribute
	11.2.1. Index Entry
	11.2.2. Flags

	11.3. Notes
	11.3.1. Length of the stream
	11.3.2. Stream

	12. Attribute - $BITMAP (0xB0)
	12.1. Overview
	12.2. Layout of the Attribute

	13. Attribute - $REPARSE_POINT (0xC0)
	13.1. Overview
	13.2. Layout of the Attribute (Microsoft Reparse Point)
	13.3. Layout of the Attribute (Third-Party Reparse Point)
	13.3.1. Symbolic Link Reparse Data
	13.3.2. Volume Link Reparse Data
	13.3.3. Reparse Tag Flags

	13.4. Notes
	13.4.1. Other Information

	14. Attribute - $EA_INFORMATION (0xD0)
	14.1. Overview
	14.2. Layout of the Attribute

	15. Attribute - $EA (0xE0)
	15.1. Overview
	15.2. Layout of the Attribute
	15.2.1. Flags

	15.3. Notes
	15.3.1. Other Information
	15.3.2. Questions

	16. Attribute - $LOGGED_UTILITY_STREAM (0x100)
	16.1. Overview
	16.2. Layout of the Attribute
	16.3. Notes
	16.3.1. Other Information

	Chapter 3. NTFS Files
	1. Overview
	1.1. Layout of the Volume
	1.2. Notes
	1.2.1. Unused Inodes
	1.2.2. Other Information

	2. NTFS Files: $MFT (0)
	2.1. Overview
	2.2. $MFT Attributes
	2.3. Layout of the File
	2.3.1. Unnamed Data Stream

	2.4. Notes
	2.4.1. MFT Zone
	2.4.2. Other Information

	3. NTFS Files: $MFTMirr (1)
	3.1. Overview
	3.2. $MFTMirr Attributes
	3.3. Layout of the File
	3.3.1. Unnamed Data Stream

	4. NTFS Files: $LogFile (2)
	4.1. Overview
	4.2. $LogFile Attributes
	4.3. Layout of the File
	4.3.1. Unnamed Data Stream

	4.4. Notes
	4.4.1. Other Information

	5. NTFS Files: $Volume (3)
	5.1. Overview
	5.2. $Volume Attributes
	5.3. Layout of the File
	5.3.1. Unnamed Data Stream

	5.4. Notes
	5.4.1. Other Information

	6. NTFS Files: $AttrDef (4)
	6.1. Overview
	6.2. $AttrDef Attributes
	6.3. Layout of the File
	6.3.1. Unnamed Data Stream
	6.3.2. Display Rule
	6.3.3. Collation Rule
	6.3.4. Flags

	6.4. Notes
	6.4.1. Other Information

	6.5. Examples
	6.5.1. Windows NT Example
	6.5.2. Windows 2000 and Windows XP Example

	7. NTFS Files: . (Root Directory) (5)
	7.1. Overview
	7.2. Dot (.) Attributes
	7.3. Layout of the File
	7.3.1. $MountMgrDatabase Data Stream

	7.4. Notes
	7.4.1. Other Information

	8. NTFS Files: $Bitmap (6)
	8.1. Overview
	8.2. $Bitmap Attributes
	8.3. Layout of the File
	8.3.1. Unnamed Data Stream

	8.4. Notes
	8.4.1. MFT Zone
	8.4.2. Other Information

	9. NTFS Files: $Boot (7)
	9.1. Overview
	9.2. $Boot Attributes
	9.3. Layout of the File
	9.3.1. Unnamed Data Stream

	9.4.
	9.5. Notes
	9.5.1. Other Information

	10. NTFS Files: $BadClus (8)
	10.1. Overview
	10.2. $BadClus Attributes
	10.3. Layout
	10.3.1. Unnamed Data Stream
	10.3.2. $Bad Data Stream

	10.4. Notes
	10.4.1. Other Information

	11. NTFS Files: $Secure (9)
	11.1. Overview
	11.2. $Secure Attributes
	11.3. Layout of the File
	11.3.1. $SDS Data Stream
	11.3.2. $SDH Index
	11.3.3. $SII Index

	11.4. Notes
	11.4.1. Questions

	12. NTFS Files: $UpCase (10)
	12.1. Overview
	12.2. $UpCase Attributes
	12.3. Layout of the File
	12.3.1. Unnamed Data Stream

	12.4. Notes
	12.4.1. Other Information

	13. NTFS Files: $Extend (11)
	13.1. Overview
	13.2. $Extend Attributes
	13.3. Layout of the File
	13.3.1. $I30 Index

	13.4. Notes
	13.4.1. Other Information

	14. NTFS Files: $ObjId (Any)
	14.1. Overview
	14.2. $ObjId Attributes
	14.3. Layout of the File
	14.3.1. $O Index
	14.3.2. Flags

	14.4. Notes
	14.4.1. Other Information

	15. NTFS Files: $Quota (NT:9, 2K:Any)
	15.1. Overview
	15.2. $Quota Attributes
	15.3. Layout of the File
	15.3.1. $O Index
	15.3.2. $Q Index
	15.3.3. Flags

	15.4. Notes
	15.4.1. Other Information

	16. NTFS Files: $Reparse (Any)
	16.1. Overview
	16.2. $Reparse Attributes
	16.3. Layout of the File
	16.3.1. $R Index

	16.4. Notes
	16.4.1. Other Information

	17. NTFS Files: $UsnJrnl (Any)
	17.1. Overview
	17.2. $UsnJrnl Attributes
	17.3. Layout of the File
	17.3.1. $J Data Stream

	17.4.
	17.4.1. $Max Data Stream

	17.5. Notes

	Chapter 4. NTFS Concepts
	1. Overview
	1.1. Index

	2. Concept - Attribute Header
	2.1. Overview
	2.2. Standard Attribute Header
	2.2.1. Resident, No Name
	2.2.2. Resident, Named
	2.2.3. Non-Resident, No Name
	2.2.4. Non-Resident, Named
	2.2.5. Flags

	2.3. Notes
	2.3.1. Other Information

	3. Concept - Attribute Id
	3.1. Overview

	4. Concept - B*Trees
	4.1. Overview
	4.2. Basic Terminology
	4.3. NTFS Trees
	4.4. Discussion
	4.5. References

	5. Concept - Clusters
	5.1. Overview
	5.1.1. Logical Cluster Number (LCN)
	5.1.2. Virtual Cluster Number (VCN)
	5.1.3. Data Runs

	5.2. Notes
	5.2.1. Other information
	5.2.2. Questions

	6. Concept - Collation
	6.1. Overview
	6.2. Usage
	6.3. Notes
	6.3.1. Questions

	7. Concept - Compression
	7.1. Overview

	8. Concept - Data Runs
	8.1. Overview
	8.2. Layout
	8.2.1. ...Example

	8.3. data runs
	8.4. Examples
	8.4.1. Example 1 - Normal, Unfragmented File
	8.4.2. Example 2 - Normal, Fragmented File
	8.4.3. Example 3 - Normal, Scrambled File
	8.4.4. Example 4 - Sparse, Unfragmented File
	8.4.5. Example 5 - Compressed, Unfragmented File
	8.4.6. Example 6 - Compressed, Sparse, Fragmented File

	9. Concept - Directory
	9.1. Overview
	9.2. Attributes
	9.2.1.
	9.2.1.1. Index Entry
	9.2.1.2. Index Root
	9.2.1.3. Index Allocation
	9.2.1.4. Index Bitmap

	9.3. Definition
	9.4. Properties
	9.5. Interest

	10. Concept - File
	10.1. Overview
	10.2. Attributes
	10.2.1. Standard Information
	10.2.2. File Name
	10.2.3. Security Descriptor
	10.2.4. Data

	10.3. Named Data Streams
	10.4. Summary Information

	11. Concept - File Record
	11.1. Overview
	11.2. Layout
	11.3. Notes

	12. Concept - File Reference
	12.1. Overview
	12.2. Layout
	12.3. Notes
	12.3.1. Sequence number

	13. Concept - Filename Namespace
	13.1. Overview
	13.2. Possible Namespaces

	14. Concept - Fixup
	14.1. Overview
	14.2. What Does It Do?
	14.3. Example
	14.4. The Details
	14.4.1. Writing
	14.4.2. Reading

	15. Concept - Index Header
	15.1. Overview
	15.2. Layout
	15.2.1. Standard Index Header

	15.3. Notes
	15.3.1. List of Common Indexes
	15.3.2. Other Information

	16. Concept - Index Record
	16.1. Overview
	16.2. Definition
	16.3. Layout
	16.3.1. The header part
	16.3.2. The sequence of index entries part

	17. Concept - Links
	17.1. Overview
	17.2. Interest
	17.3. Questions

	18. Concept - Restart
	18.1. Overview

	19. Concept - SID
	19.1. Overview

	20. Concept - Sparse
	20.1. Overview

	Chapter 5. Epilogue
	1. ToDo
	2. Unanswered Questions
	3. History

	Appendix Appendix I. License
	1. GNU Free Documentation License
	1.1. Version 1.1, March 2000
	1.2. 0. PREAMBLE
	1.3. 1. APPLICABILITY AND DEFINITIONS
	1.4. 2. VERBATIM COPYING
	1.5. 3. COPYING IN QUANTITY
	1.6. 4. MODIFICATIONS
	1.7. 5. COMBINING DOCUMENTS
	1.8. 6. COLLECTIONS OF DOCUMENTS
	1.9. 7. AGGREGATION WITH INDEPENDENT WORKS
	1.10. 8. TRANSLATION
	1.11. 9. TERMINATION
	1.12. 10. FUTURE REVISIONS OF THIS LICENSE

	Glossary

