-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExample.py
307 lines (259 loc) · 8.76 KB
/
Example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 18 22:34:21 2022
@author: mickey
"""
import numpy as np
from scipy.stats import norm
from scipy.integrate import quad, dblquad
import gurobipy as gp
from sklearn.linear_model import LogisticRegression
from scipy.linalg import sqrtm
# CVaR problem
cvarAlpha = 0.1
def cvarSAA(data, x0=None):
n = len(data)
data = np.sort(data)
idx = int(np.ceil(cvarAlpha * n))
x = data[-idx]
mean, var = cvarSAAObj(data, x, x0=x0)
return x, mean, var # SAA solution, SAA objective value, SAA objective variance
def cvarSAAObj(data, x, x0=None):
SAA_cost = x + np.maximum(data - x, 0) / cvarAlpha
if x0 is not None:
SAA_cost -= x0 + np.maximum(data - x0, 0) / cvarAlpha
return np.mean(SAA_cost), np.var(SAA_cost)
def cvarObj(x):
def func(t):
return 1 / np.sqrt(2 * np.pi) * np.exp(-t**2 / 2) * (t - x)
return x + quad(func, x, np.inf)[0] / cvarAlpha
def cvarSample(n, rng):
return rng.normal(size=n)
def cvarSol():
return norm.ppf(1 - cvarAlpha)
# Portfolio problem
rng = np.random.default_rng(seed=1235)
portSigmaRoot = rng.uniform(size=(5, 5))
portSigma = np.matmul(portSigmaRoot.T, portSigmaRoot)
portMu = np.arange(1, 6)
portB = 3
portAlpha = 0.05
def portfolioSAA(data, x0=None):
n = len(data)
m = gp.Model()
m.Params.OutputFlag = 0
x = m.addVars(5)
c = m.addVar(lb=-float("inf"), obj=1)
s = m.addVars(n, obj=1/(n*portAlpha))
m.addConstrs(gp.quicksum([-data[i, j]*x[j] for j in range(len(x))]) - c <= s[i] for i in range(len(s)))
m.addConstr(gp.quicksum([portMu[i]*x[i] for i in range(len(x))]) >= portB)
m.addConstr(gp.quicksum(x) == 1)
m.optimize()
sol = np.array(m.x[:6])
mean, var = portfolioSAAObj(data, sol, x0=x0)
return sol, mean, var
def portfolioSAAObj(data, x, x0=None):
xval = np.array(x[:5])
cval = x[5]
SAA_cost = cval + np.maximum(-data.dot(xval) - cval, 0) / portAlpha
if x0 is not None:
SAA_cost -= x0[5] + np.maximum(-data.dot(x0[:5]) - x0[5], 0) / portAlpha
return np.mean(SAA_cost), np.var(SAA_cost)
def portfolioObj(x):
xval = x[:5]
cval = x[5]
mu = -portMu.dot(xval)
SigmaRoot = np.sqrt(max(xval.dot(portSigma.dot(xval)), 0))
if SigmaRoot <= 0:
return cval + max(mu - cval, 0) / portAlpha
cutoff = (cval - mu) / SigmaRoot
def func(t):
return 1 / np.sqrt(2 * np.pi) * np.exp(-t**2 / 2) * (t - cutoff)
return cval + SigmaRoot * quad(func, cutoff, np.inf)[0] / portAlpha
def portfolioSample(n, rng):
return rng.multivariate_normal(portMu, portSigma, size=n)
def portfolioSol():
q = norm.ppf(1 - portAlpha)
def func(t):
return 1 / np.sqrt(2 * np.pi) * np.exp(-t**2 / 2) * (t - q)
kappa = q + quad(func, q, np.inf)[0] / portAlpha
m = gp.Model()
m.Params.OutputFlag = 0
x = m.addVars(5, obj=-portMu)
y = m.addVar(obj=kappa)
m.addConstr(gp.quicksum([portMu[i]*x[i] for i in range(len(x))]) >= portB)
m.addConstr(gp.quicksum(x) == 1)
qConstr = gp.QuadExpr()
for i in range(len(x)):
for j in range(len(x)):
qConstr += portSigma[i][j] * x[i] * x[j]
m.addConstr(qConstr <= y*y)
m.optimize()
xval = np.array(m.x[:5])
mu = -portMu.dot(xval)
Sigma = max(xval.dot(portSigma.dot(xval)), 0)
return np.concatenate((xval, [mu + q * np.sqrt(Sigma)]))
# linear integer problem
intSigmaRoot = rng.uniform(size=(10, 10))
intSigma = np.matmul(intSigmaRoot.T, intSigmaRoot)
intMu = np.linspace(-1, 1, num=10)
intB = np.array([-1, 2])
intA1 = -np.ones(10, dtype=int)
intA2 = np.zeros(10, dtype=int)
intA2[-4:] = 1
intA = np.vstack((intA1, intA2))
intXgrid = []
intXval = np.zeros(10, dtype=int)
while True:
if all(intA.dot(intXval) <= intB):
intXgrid.append(intXval.copy())
idx = -1
intXval[idx] += 1
while idx > -len(intXval) and intXval[idx] > 1:
intXval[idx] = 0
idx -= 1
intXval[idx] += 1
if intXval[idx] > 1:
break
intXgrid = np.array(intXgrid).T
def intSAA(data, x0=None):
mu = np.mean(data, axis=0)
idx = np.argmin(mu.dot(intXgrid))
xval = intXgrid[:, idx]
mean, var = intSAAObj(data, xval, x0=x0)
return xval, mean, var # SAA solution, SAA objective value, SAA objective variance
def intSAAObj(data, x, x0=None):
SAA_cost = data.dot(x)
if x0 is not None:
SAA_cost -= data.dot(x0)
return np.mean(SAA_cost), np.var(SAA_cost)
def intObj(x):
return intMu.dot(x)
def intSample(n, rng):
return rng.multivariate_normal(intMu, intSigma, size=n)
def intSol():
idx = np.argmin(intMu.dot(intXgrid))
return intXgrid[:, idx]
linearPerturb = 0.05
# simple linear problem
def linearSAA(data, x0=None):
mu = np.mean(data)
slope = -linearPerturb - 2 * mu
if slope >= 0:
x = -1
else:
x = 1
mean, var = linearSAAObj(data, x, x0=x0)
return x, mean, var # SAA solution, SAA objective value, SAA objective variance
def linearSAAObj(data, x, x0=None):
SAA_cost = -linearPerturb* x + (3 - 2 * x) * data
if x0 is not None:
SAA_cost -= -linearPerturb * x0 + (3 - 2 * x0) * data
return np.mean(SAA_cost), np.var(SAA_cost)
def linearObj(x):
return -linearPerturb * x
def linearSample(n, rng):
return rng.normal(size=n)
def linearSol():
return 1
# logistic regression
logitD = 10
logitCoeff = rng.uniform(size=logitD+1)
logitEps = 1e-20
def logitSAA(data, x0=None):
X = data[:, :-1]
Y = data[:, -1].astype(int)
oneClass = all(Y == Y[0])
if oneClass:
x = np.zeros(logitD+1)
if Y[0] == 0:
x[-1] = -1e20
else:
x[-1] = 1e20
else:
model = LogisticRegression(penalty="none", random_state=666)
result = model.fit(X, Y)
x = np.concatenate((result.coef_[0], result.intercept_))
mean, var = logitSAAObj(data, x, x0=x0)
return x, mean, var
def logitSAAObj(data, x, x0=None):
X = data[:, :-1]
Y = data[:, -1].astype(int)
posYIdx = Y == 1
pExp = -X.dot(x[:-1]) - x[-1]
p = np.zeros(len(pExp))
posIdx = pExp > 0
p[posIdx] = np.exp(-pExp[posIdx]) / (np.exp(-pExp[posIdx]) + 1)
p[~posIdx] = 1 / (np.exp(pExp[~posIdx]) + 1)
SAA_cost = np.zeros(len(X))
SAA_cost[posYIdx] = -np.log(np.maximum(p[posYIdx], logitEps))
SAA_cost[~posYIdx] = -np.log(np.maximum(1 - p[~posYIdx], logitEps))
if x0 is not None:
p0Exp = -X.dot(x0[:-1]) - x0[-1]
p0 = np.zeros(len(p0Exp))
posIdx = p0Exp > 0
p0[posIdx] = np.exp(-p0Exp[posIdx]) / (np.exp(-p0Exp[posIdx]) + 1)
p0[~posIdx] = 1 / (np.exp(p0Exp[~posIdx]) + 1)
SAA_cost[posYIdx] -= -np.log(np.maximum(p0[posYIdx], logitEps))
SAA_cost[~posYIdx] -= -np.log(np.maximum(1 - p0[~posYIdx], logitEps))
return np.mean(SAA_cost), np.var(SAA_cost)
def logitObj(x):
A = np.vstack((logitCoeff[:-1], x[:-1]))
Aroot = sqrtm(A.dot(A.T))
def func(a, b):
density = 1 / (2 * np.pi) * np.exp(-(a**2 + b**2) / 2)
transform = Aroot.dot([a,b])
pstarExp = -transform[0] - logitCoeff[-1]
if pstarExp > 0:
pstar = np.exp(-pstarExp) / (np.exp(-pstarExp) + 1)
else:
pstar = 1 / (np.exp(pstarExp) + 1)
pExp = -transform[1] - x[-1]
if pExp > 0:
p = np.exp(-pExp) / (np.exp(-pExp) + 1)
else:
p = 1 / (np.exp(pExp) + 1)
val = -pstar * np.log(np.maximum(p, logitEps)) - (1 - pstar) * np.log(np.maximum(1 - p, logitEps))
return val * density
return dblquad(func, -np.inf, np.inf, -np.inf, np.inf)[0]
def logitSample(n, rng):
X = rng.normal(size=(n, logitD))
Y = []
for i in range((len(X))):
pExp = -X[i].dot(logitCoeff[:-1]) - logitCoeff[-1]
if pExp > 0:
p = np.exp(-pExp) / (np.exp(-pExp) + 1)
else:
p = 1 / (np.exp(pExp) + 1)
if rng.uniform() < p:
Y.append(1)
else:
Y.append(0)
return np.hstack((X, np.array(Y).reshape(-1, 1)))
def logitSol():
return logitCoeff
simplexMu = np.zeros(10)
simplexMu[5:] = 0.1
# simple linear problem
def simplexSAA(data, x0=None):
mu = np.mean(data, axis=0)
idx = np.argmin(mu)
x = np.zeros(10)
x[idx] = 1
mean, var = simplexSAAObj(data, x, x0=x0)
return x, mean, var # SAA solution, SAA objective value, SAA objective variance
def simplexSAAObj(data, x, x0=None):
SAA_cost = data.dot(x)
if x0 is not None:
SAA_cost -= data.dot(x0)
return np.mean(SAA_cost), np.var(SAA_cost)
def simplexObj(x):
return simplexMu.dot(x)
def simplexSample(n, rng):
return rng.multivariate_normal(simplexMu, np.eye(10), size=n)
def simplexSol():
idx = np.argmin(simplexMu)
sol = np.zeros(10)
sol[idx] = 1
return sol