-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGapEstimator.py
157 lines (123 loc) · 4.41 KB
/
GapEstimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 18 14:24:16 2022
@author: mickey
"""
import numpy as np
from scipy.stats import norm, t
class BagProcedure:
def __init__(self, replace=False, debias=False, pointVar=False, rng=None):
self._replace = replace
self._debias = debias
self._pointVar = pointVar
if rng is None:
self._rng = np.random.default_rng()
else:
self._rng = rng
def run(self, GapProblem, data, alpha, k, B, x0=None):
n = len(data)
if n < 30:
cv = t.ppf(1 - alpha, n - 1)
else:
cv = norm.ppf(1 - alpha)
Ntable = np.full((n, B), -k/n)
Zval = np.zeros(B)
for b in range(B):
idxArray = self._rng.choice(n, size=k, replace=self._replace)
for idx in idxArray:
Ntable[idx, b] += 1
_, obj, _ = GapProblem.computeSAA(data[idxArray], x0=x0)
Zval[b] = obj
Zmean = np.mean(Zval)
Zvar = np.var(Zval)
cov = Ntable.dot(Zval - Zmean) / B
sigma2 = np.sum(cov**2)
if self._debias:
if self._replace:
sigma2 = max(sigma2 - k*(n-1) / (B*n) * Zvar, 0)
else:
sigma2 = max(sigma2 - k*(n-k) / (B*n) * Zvar, 0)
if not self._replace:
sigma2 *= n**2 / (n-k)**2
if self._pointVar:
sigma2 += Zvar / B
if x0 is None:
return Zmean - cv * np.sqrt(sigma2), Zmean, sigma2
else:
return -(Zmean - cv * np.sqrt(sigma2)), -Zmean, sigma2
class BatchProcedure:
def run(self, GapProblem, data, alpha, m, x0=None):
n = len(data)
k = n // m
surplus = n - m * k
sizeList = [k]*(m - surplus) + [k+1]*surplus
idxArray = np.concatenate(([0], np.cumsum(sizeList)))
if m < 30:
cv = t.ppf(1 - alpha, m - 1)
else:
cv = norm.ppf(1 - alpha)
Zval = np.zeros(m)
for b in range(m):
_, obj, _ = GapProblem.computeSAA(data[idxArray[b]:idxArray[b+1]], x0=x0)
Zval[b] = obj
Zmean = np.mean(Zval)
Zvar = np.var(Zval, ddof=1)
sigma2 = Zvar / m
if x0 is None:
return Zmean - cv * np.sqrt(sigma2), Zmean, sigma2
else:
return -(Zmean - cv * np.sqrt(sigma2)), -Zmean, sigma2
class SRPProcedure:
def run(self, GapProblem, data, alpha, x0=None):
n = len(data)
if n < 30:
cv = t.ppf(1 - alpha, n - 1)
else:
cv = norm.ppf(1 - alpha)
_, obj, var = GapProblem.computeSAA(data, x0=x0)
sigma2 = var / n
if x0 is None:
return obj - cv * np.sqrt(sigma2), obj, sigma2
else:
return -(obj - cv * np.sqrt(sigma2)), -obj, sigma2
class I2RPProcedure:
def run(self, GapProblem, data, alpha, x0=None):
n = len(data)
n1 = n // 2
if n1 < 30:
cv = t.ppf(1 - alpha, n1 - 1)
else:
cv = norm.ppf(1 - alpha)
_, obj, _ = GapProblem.computeSAA(data[:n1], x0=x0)
_, _, var = GapProblem.computeSAA(data[n1:], x0=x0)
sigma2 = var / n1
if x0 is None:
return obj - cv * np.sqrt(sigma2), obj, sigma2
else:
return -(obj - cv * np.sqrt(sigma2)), -obj, sigma2
class A2RPProcedure:
def run(self, GapProblem, data, alpha, x0=None):
n = len(data)
n1 = n // 2
if n < 30:
cv = t.ppf(1 - alpha, n - 1)
else:
cv = norm.ppf(1 - alpha)
_, obj1, var1 = GapProblem.computeSAA(data[:n1], x0=x0)
_, obj2, var2 = GapProblem.computeSAA(data[n1:], x0=x0)
obj = (obj1 + obj2) / 2
var = (var1 + var2) / 2
sigma2 = var / n
if x0 is None:
return obj - cv * np.sqrt(sigma2), obj, sigma2
else:
return -(obj - cv * np.sqrt(sigma2)), -obj, sigma2
class GapProblem:
def __init__(self, SAA, sampleObj):
self._SAA = SAA
self._sampleObj = sampleObj
def computeSAA(self, data, x0=None):
return self._SAA(data, x0=x0)
def getSAAObj(self, data, x, x0=None):
return self._sampleObj(data, x, x0=x0)