-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathtimer.py
executable file
·313 lines (258 loc) · 10.5 KB
/
timer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import time
from numpy import mean
from deepspeed.utils.logging import log_dist
from deepspeed.accelerator import get_accelerator
FORWARD_MICRO_TIMER = 'fwd_microstep'
FORWARD_GLOBAL_TIMER = 'fwd'
BACKWARD_MICRO_TIMER = 'bwd_microstep'
BACKWARD_GLOBAL_TIMER = 'bwd'
BACKWARD_INNER_MICRO_TIMER = 'bwd_inner_microstep'
BACKWARD_INNER_GLOBAL_TIMER = 'bwd_inner'
BACKWARD_REDUCE_MICRO_TIMER = 'bwd_allreduce_microstep'
BACKWARD_REDUCE_GLOBAL_TIMER = 'bwd_allreduce'
STEP_MICRO_TIMER = 'step_microstep'
STEP_GLOBAL_TIMER = 'step'
TIME_EPSILON = 1e-6
try:
import psutil
PSUTILS_INSTALLED = True
except ImportError:
PSUTILS_INSTALLED = False
pass
class CudaEventTimer(object):
def __init__(self, start_event: get_accelerator().Event, end_event: get_accelerator().Event):
self.start_event = start_event
self.end_event = end_event
def get_elapsed_msec(self):
get_accelerator().current_stream().wait_event(self.end_event)
self.end_event.synchronize()
return self.start_event.elapsed_time(self.end_event)
class SynchronizedWallClockTimer:
"""Group of timers. Borrowed from Nvidia Megatron code"""
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.started_ = False
self.event_timers = []
self.use_host_timer = get_accelerator().use_host_timers()
self.start_event = None
self.elapsed_records = None
self.start_time = 0.0
self.end_time = 0.0
def start(self):
"""Start the timer."""
assert not self.started_, f"{self.name_} timer has already been started"
if self.use_host_timer:
self.start_time = time.time()
else:
event_class = get_accelerator().Event
self.start_event = event_class(enable_timing=True)
self.start_event.record()
self.started_ = True
def stop(self, reset=False, record=False):
"""Stop the timer."""
assert self.started_, "timer is not started"
event_class = get_accelerator().Event
if self.use_host_timer:
self.end_time = time.time()
self.event_timers.append(self.end_time - self.start_time)
else:
event_class = get_accelerator().Event
end_event = event_class(enable_timing=True)
end_event.record()
self.event_timers.append(CudaEventTimer(self.start_event, end_event))
self.start_event = None
self.started_ = False
def _get_elapsed_msec(self):
if self.use_host_timer:
self.elapsed_records = [et * 1000.0 for et in self.event_timers]
else:
self.elapsed_records = [et.get_elapsed_msec() for et in self.event_timers]
self.event_timers.clear()
return sum(self.elapsed_records)
def reset(self):
"""Reset timer."""
self.started_ = False
self.start_event = None
self.elapsed_records = None
self.event_timers.clear()
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self._get_elapsed_msec()
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
def mean(self):
self.elapsed(reset=False)
return trim_mean(self.elapsed_records, 0.1)
def __init__(self):
self.timers = {}
def get_timers(self):
return self.timers
def __call__(self, name):
if name not in self.timers:
self.timers[name] = self.Timer(name)
return self.timers[name]
@staticmethod
def memory_usage():
alloc = "mem_allocated: {:.4f} GB".format(get_accelerator().memory_allocated() / (1024 * 1024 * 1024))
max_alloc = "max_mem_allocated: {:.4f} GB".format(get_accelerator().max_memory_allocated() /
(1024 * 1024 * 1024))
cache = "cache_allocated: {:.4f} GB".format(get_accelerator().memory_cached() / (1024 * 1024 * 1024))
max_cache = "max_cache_allocated: {:.4f} GB".format(get_accelerator().max_memory_cached() /
(1024 * 1024 * 1024))
return " | {} | {} | {} | {}".format(alloc, max_alloc, cache, max_cache)
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None):
"""Log a group of timers."""
assert normalizer > 0.0
string = f"time (ms)"
for name in names:
if name in self.timers:
elapsed_time = (self.timers[name].elapsed(reset=reset) / normalizer)
string += " | {}: {:.2f}".format(name, elapsed_time)
log_dist(string, ranks=ranks or [0])
def get_mean(self, names, normalizer=1.0, reset=True):
"""Get the mean of a group of timers."""
assert normalizer > 0.0
means = {}
for name in names:
if name in self.timers:
elapsed_time = (self.timers[name].mean() * 1000.0 / normalizer)
means[name] = elapsed_time
return means
class NoopTimer:
class Timer:
def start(self):
...
def reset(self):
...
def stop(self, **kwargs):
...
def elapsed(self, **kwargs):
return 0
def mean(self):
return 0
def __init__(self):
self.timer = self.Timer()
def __call__(self, name):
return self.timer
def get_timers(self):
return {}
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None):
...
def get_mean(self, names, normalizer=1.0, reset=True):
...
class ThroughputTimer:
def __init__(self, config, batch_size, start_step=2, steps_per_output=None, monitor_memory=False, logging_fn=None):
from deepspeed.utils import logger
self.config = config
self.start_time = 0
self.end_time = 0
self.started = False
self.batch_size = 1 if batch_size is None else batch_size
self.start_step = start_step
self.epoch_count = 0
self.micro_step_count = 0
self.global_step_count = 0
self.total_elapsed_time = 0
self.step_elapsed_time = 0
self.steps_per_output = steps_per_output
self.monitor_memory = monitor_memory
self.logging = logging_fn
if self.logging is None:
self.logging = logger.info
self.initialized = False
if self.monitor_memory and not PSUTILS_INSTALLED:
raise ImportError("Unable to import 'psutils', please install package")
def update_epoch_count(self):
self.epoch_count += 1
self.micro_step_count = 0
def _init_timer(self):
self.initialized = True
def start(self):
if not self.config.enabled:
return
self._init_timer()
self.started = True
if self.global_step_count >= self.start_step:
if self.config.synchronized:
get_accelerator().synchronize()
self.start_time = time.time()
def _is_report_boundary(self):
if self.steps_per_output is None:
return False
return self.global_step_count % self.steps_per_output == 0
def stop(self, global_step=False, report_speed=True):
if not self.config.enabled or not self.started:
return
self.started = False
self.micro_step_count += 1
if global_step:
self.global_step_count += 1
if self.start_time > 0:
if self.config.synchronized:
get_accelerator().synchronize()
self.end_time = time.time()
duration = self.end_time - self.start_time
self.total_elapsed_time += duration
self.step_elapsed_time += duration
if global_step:
if report_speed and self._is_report_boundary():
self.logging(
"epoch={}/micro_step={}/global_step={}, RunningAvgSamplesPerSec={}, CurrSamplesPerSec={}, "
"MemAllocated={}GB, MaxMemAllocated={}GB".format(
self.epoch_count,
self.micro_step_count,
self.global_step_count,
self.avg_samples_per_sec(),
self.batch_size / (self.step_elapsed_time + TIME_EPSILON),
round(get_accelerator().memory_allocated() / 1024**3, 2),
round(get_accelerator().max_memory_allocated() / 1024**3, 2),
))
if self.monitor_memory:
virt_mem = psutil.virtual_memory()
swap = psutil.swap_memory()
self.logging("epoch={}/micro_step={}/global_step={}, vm %: {}, swap %: {}".format(
self.epoch_count,
self.micro_step_count,
self.global_step_count,
virt_mem.percent,
swap.percent,
))
self.step_elapsed_time = 0
def avg_samples_per_sec(self):
if self.global_step_count > 0:
total_step_offset = self.global_step_count - self.start_step
avg_time_per_step = self.total_elapsed_time / total_step_offset
# training samples per second
return self.batch_size / avg_time_per_step
return float("-inf")
def trim_mean(data, trim_percent):
"""Compute the trimmed mean of a list of numbers.
Args:
data (list): List of numbers.
trim_percent (float): Percentage of data to trim.
Returns:
float: Trimmed mean.
"""
assert 0.0 <= trim_percent <= 1.0
n = len(data)
# Account for edge case of empty list
if len(data) == 0:
return 0
data.sort()
k = int(round(n * (trim_percent)))
return mean(data[k:n - k])