-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
dataset.h
1057 lines (913 loc) · 36.4 KB
/
dataset.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* Copyright (c) 2016 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#ifndef LIGHTGBM_DATASET_H_
#define LIGHTGBM_DATASET_H_
#include <LightGBM/arrow.h>
#include <LightGBM/config.h>
#include <LightGBM/feature_group.h>
#include <LightGBM/meta.h>
#include <LightGBM/train_share_states.h>
#include <LightGBM/utils/byte_buffer.h>
#include <LightGBM/utils/openmp_wrapper.h>
#include <LightGBM/utils/random.h>
#include <LightGBM/utils/text_reader.h>
#include <string>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <unordered_set>
#include <utility>
#include <vector>
#include <LightGBM/cuda/cuda_column_data.hpp>
#include <LightGBM/cuda/cuda_metadata.hpp>
namespace LightGBM {
/*! \brief forward declaration */
class DatasetLoader;
/*!
* \brief This class is used to store some meta(non-feature) data for training data,
* e.g. labels, weights, initial scores, query level information.
*
* Some details:
* 1. Label, used for training.
* 2. Weights, weighs of records, optional
* 3. Query Boundaries, necessary for LambdaRank.
* The documents of i-th query is in [ query_boundaries[i], query_boundaries[i+1] )
* 4. Query Weights, auto calculate by weights and query_boundaries(if both of them are existed)
* the weight for i-th query is sum(query_boundaries[i] , .., query_boundaries[i+1]) / (query_boundaries[i + 1] - query_boundaries[i+1])
* 5. Initial score. optional. if existing, the model will boost from this score, otherwise will start from 0.
*/
class Metadata {
public:
/*!
* \brief Null constructor
*/
Metadata();
/*!
* \brief Initialization will load query level information, since it is need for sampling data
* \param data_filename Filename of data
*/
void Init(const char* data_filename);
/*!
* \brief init as subset
* \param metadata Filename of data
* \param used_indices
* \param num_used_indices
*/
void Init(const Metadata& metadata, const data_size_t* used_indices, data_size_t num_used_indices);
/*!
* \brief Initial with binary memory
* \param memory Pointer to memory
*/
void LoadFromMemory(const void* memory);
/*! \brief Destructor */
~Metadata();
/*!
* \brief Initial work, will allocate space for label, weight (if exists) and query (if exists)
* \param num_data Number of training data
* \param weight_idx Index of weight column, < 0 means doesn't exists
* \param query_idx Index of query id column, < 0 means doesn't exists
*/
void Init(data_size_t num_data, int weight_idx, int query_idx);
/*!
* \brief Allocate space for label, weight (if exists), initial score (if exists) and query (if exists)
* \param num_data Number of data
* \param reference Reference metadata
*/
void InitByReference(data_size_t num_data, const Metadata* reference);
/*!
* \brief Allocate space for label, weight (if exists), initial score (if exists) and query (if exists)
* \param num_data Number of data rows
* \param has_weights Whether the metadata has weights
* \param has_init_scores Whether the metadata has initial scores
* \param has_queries Whether the metadata has queries
* \param nclasses Number of classes for initial scores
*/
void Init(data_size_t num_data, int32_t has_weights, int32_t has_init_scores, int32_t has_queries, int32_t nclasses);
/*!
* \brief Partition label by used indices
* \param used_indices Indices of local used
*/
void PartitionLabel(const std::vector<data_size_t>& used_indices);
/*!
* \brief Partition meta data according to local used indices if need
* \param num_all_data Number of total training data, including other machines' data on distributed learning
* \param used_data_indices Indices of local used training data
*/
void CheckOrPartition(data_size_t num_all_data,
const std::vector<data_size_t>& used_data_indices);
void SetLabel(const label_t* label, data_size_t len);
void SetLabel(const ArrowChunkedArray& array);
void SetWeights(const label_t* weights, data_size_t len);
void SetWeights(const ArrowChunkedArray& array);
void SetQuery(const data_size_t* query, data_size_t len);
void SetPosition(const data_size_t* position, data_size_t len);
/*!
* \brief Set initial scores
* \param init_score Initial scores, this class will manage memory for init_score.
*/
void SetInitScore(const double* init_score, data_size_t len);
/*!
* \brief Save binary data to file
* \param file File want to write
*/
void SaveBinaryToFile(BinaryWriter* writer) const;
/*!
* \brief Get sizes in byte of this object
*/
size_t SizesInByte() const;
/*!
* \brief Get pointer of label
* \return Pointer of label
*/
inline const label_t* label() const { return label_.data(); }
/*!
* \brief Set label for one record
* \param idx Index of this record
* \param value Label value of this record
*/
inline void SetLabelAt(data_size_t idx, label_t value) {
label_[idx] = value;
}
/*!
* \brief Set Weight for one record
* \param idx Index of this record
* \param value Weight value of this record
*/
inline void SetWeightAt(data_size_t idx, label_t value) {
weights_[idx] = value;
}
/*!
* \brief Set initial scores for one record. Note that init_score might have multiple columns and is stored in column format.
* \param idx Index of this record
* \param values Initial score values for this record, one per class
*/
inline void SetInitScoreAt(data_size_t idx, const double* values) {
const auto nclasses = num_init_score_classes();
const double* val_ptr = values;
for (int i = idx; i < nclasses * num_data_; i += num_data_, ++val_ptr) {
init_score_[i] = *val_ptr;
}
}
/*!
* \brief Set Query Id for one record
* \param idx Index of this record
* \param value Query Id value of this record
*/
inline void SetQueryAt(data_size_t idx, data_size_t value) {
queries_[idx] = static_cast<data_size_t>(value);
}
/*! \brief Load initial scores from file */
void LoadInitialScore(const std::string& data_filename);
/*!
* \brief Insert data from a given data to the current data at a specified index
* \param start_index The target index to begin the insertion
* \param count Number of records to insert
* \param labels Pointer to label data
* \param weights Pointer to weight data, or null
* \param init_scores Pointer to init-score data, or null
* \param queries Pointer to query data, or null
*/
void InsertAt(data_size_t start_index,
data_size_t count,
const float* labels,
const float* weights,
const double* init_scores,
const int32_t* queries);
/*!
* \brief Perform any extra operations after all data has been loaded
*/
void FinishLoad();
/*!
* \brief Get weights, if not exists, will return nullptr
* \return Pointer of weights
*/
inline const label_t* weights() const {
if (!weights_.empty()) {
return weights_.data();
} else {
return nullptr;
}
}
/*!
* \brief Get positions, if does not exist then return nullptr
* \return Pointer of positions
*/
inline const data_size_t* positions() const {
if (!positions_.empty()) {
return positions_.data();
} else {
return nullptr;
}
}
/*!
* \brief Get position IDs, if does not exist then return nullptr
* \return Pointer of position IDs
*/
inline const std::string* position_ids() const {
if (!position_ids_.empty()) {
return position_ids_.data();
} else {
return nullptr;
}
}
/*!
* \brief Get Number of different position IDs
* \return number of different position IDs
*/
inline size_t num_position_ids() const {
return position_ids_.size();
}
/*!
* \brief Get data boundaries on queries, if not exists, will return nullptr
* we assume data will order by query,
* the interval of [query_boundaris[i], query_boundaris[i+1])
* is the data indices for query i.
* \return Pointer of data boundaries on queries
*/
inline const data_size_t* query_boundaries() const {
if (!query_boundaries_.empty()) {
return query_boundaries_.data();
} else {
return nullptr;
}
}
/*!
* \brief Get Number of queries
* \return Number of queries
*/
inline data_size_t num_queries() const { return num_queries_; }
/*!
* \brief Get weights for queries, if not exists, will return nullptr
* \return Pointer of weights for queries
*/
inline const label_t* query_weights() const {
if (!query_weights_.empty()) {
return query_weights_.data();
} else {
return nullptr;
}
}
/*!
* \brief Get initial scores, if not exists, will return nullptr
* \return Pointer of initial scores
*/
inline const double* init_score() const {
if (!init_score_.empty()) {
return init_score_.data();
} else {
return nullptr;
}
}
/*!
* \brief Get size of initial scores
*/
inline int64_t num_init_score() const { return num_init_score_; }
/*!
* \brief Get number of classes
*/
inline int32_t num_init_score_classes() const {
if (num_data_ && num_init_score_) {
return static_cast<int>(num_init_score_ / num_data_);
}
return 1;
}
/*! \brief Disable copy */
Metadata& operator=(const Metadata&) = delete;
/*! \brief Disable copy */
Metadata(const Metadata&) = delete;
#ifdef USE_CUDA
CUDAMetadata* cuda_metadata() const { return cuda_metadata_.get(); }
void CreateCUDAMetadata(const int gpu_device_id);
#endif // USE_CUDA
private:
/*! \brief Load wights from file */
void LoadWeights();
/*! \brief Load positions from file */
void LoadPositions();
/*! \brief Load query boundaries from file */
void LoadQueryBoundaries();
/*! \brief Calculate query weights from queries */
void CalculateQueryWeights();
/*! \brief Calculate query boundaries from queries */
void CalculateQueryBoundaries();
/*! \brief Insert labels at the given index */
void InsertLabels(const label_t* labels, data_size_t start_index, data_size_t len);
/*! \brief Set labels from pointers to the first element and the end of an iterator. */
template <typename It>
void SetLabelsFromIterator(It first, It last);
/*! \brief Insert weights at the given index */
void InsertWeights(const label_t* weights, data_size_t start_index, data_size_t len);
/*! \brief Set weights from pointers to the first element and the end of an iterator. */
template <typename It>
void SetWeightsFromIterator(It first, It last);
/*! \brief Insert initial scores at the given index */
void InsertInitScores(const double* init_scores, data_size_t start_index, data_size_t len, data_size_t source_size);
/*! \brief Insert queries at the given index */
void InsertQueries(const data_size_t* queries, data_size_t start_index, data_size_t len);
/*! \brief Filename of current data */
std::string data_filename_;
/*! \brief Number of data */
data_size_t num_data_;
/*! \brief Number of weights, used to check correct weight file */
data_size_t num_weights_;
/*! \brief Number of positions, used to check correct position file */
data_size_t num_positions_;
/*! \brief Label data */
std::vector<label_t> label_;
/*! \brief Weights data */
std::vector<label_t> weights_;
/*! \brief Positions data */
std::vector<data_size_t> positions_;
/*! \brief Position identifiers */
std::vector<std::string> position_ids_;
/*! \brief Query boundaries */
std::vector<data_size_t> query_boundaries_;
/*! \brief Query weights */
std::vector<label_t> query_weights_;
/*! \brief Number of querys */
data_size_t num_queries_;
/*! \brief Number of Initial score, used to check correct weight file */
int64_t num_init_score_;
/*! \brief Initial score */
std::vector<double> init_score_;
/*! \brief Queries data */
std::vector<data_size_t> queries_;
/*! \brief mutex for threading safe call */
std::mutex mutex_;
bool weight_load_from_file_;
bool position_load_from_file_;
bool query_load_from_file_;
bool init_score_load_from_file_;
#ifdef USE_CUDA
std::unique_ptr<CUDAMetadata> cuda_metadata_;
#endif // USE_CUDA
};
/*! \brief Interface for Parser */
class Parser {
public:
typedef const char* (*AtofFunc)(const char* p, double* out);
/*! \brief Default constructor */
Parser() {}
/*!
* \brief Constructor for customized parser. The constructor accepts content not path because need to save/load the config along with model string
*/
explicit Parser(std::string) {}
/*! \brief virtual destructor */
virtual ~Parser() {}
/*!
* \brief Parse one line with label
* \param str One line record, string format, should end with '\0'
* \param out_features Output columns, store in (column_idx, values)
* \param out_label Label will store to this if exists
*/
virtual void ParseOneLine(const char* str,
std::vector<std::pair<int, double>>* out_features, double* out_label) const = 0;
virtual int NumFeatures() const = 0;
/*!
* \brief Create an object of parser, will auto choose the format depend on file
* \param filename One Filename of data
* \param header whether input file contains header
* \param num_features Pass num_features of this data file if you know, <=0 means don't know
* \param label_idx index of label column
* \param precise_float_parser using precise floating point number parsing if true
* \return Object of parser
*/
static Parser* CreateParser(const char* filename, bool header, int num_features, int label_idx, bool precise_float_parser);
/*!
* \brief Create an object of parser, could use customized parser, or auto choose the format depend on file
* \param filename One Filename of data
* \param header whether input file contains header
* \param num_features Pass num_features of this data file if you know, <=0 means don't know
* \param label_idx index of label column
* \param precise_float_parser using precise floating point number parsing if true
* \param parser_config_str Customized parser config content
* \return Object of parser
*/
static Parser* CreateParser(const char* filename, bool header, int num_features, int label_idx, bool precise_float_parser,
std::string parser_config_str);
/*!
* \brief Generate parser config str used for custom parser initialization, may save values of label id and header
* \param filename One Filename of data
* \param parser_config_filename One Filename of parser config
* \param header whether input file contains header
* \param label_idx index of label column
* \return Parser config str
*/
static std::string GenerateParserConfigStr(const char* filename, const char* parser_config_filename, bool header, int label_idx);
};
/*! \brief Interface for parser factory, used by customized parser */
class ParserFactory {
private:
ParserFactory() {}
std::map<std::string, std::function<Parser*(std::string)>> object_map_;
public:
~ParserFactory() {}
static ParserFactory& getInstance();
void Register(std::string class_name, std::function<Parser*(std::string)> objc);
Parser* getObject(std::string class_name, std::string config_str);
};
/*! \brief Interface for parser reflector, used by customized parser */
class ParserReflector {
public:
ParserReflector(std::string class_name, std::function<Parser*(std::string)> objc) {
ParserFactory::getInstance().Register(class_name, objc);
}
virtual ~ParserReflector() {}
};
/*! \brief The main class of data set,
* which are used to training or validation
*/
class Dataset {
public:
friend DatasetLoader;
LIGHTGBM_EXPORT Dataset();
LIGHTGBM_EXPORT Dataset(data_size_t num_data);
void Construct(
std::vector<std::unique_ptr<BinMapper>>* bin_mappers,
int num_total_features,
const std::vector<std::vector<double>>& forced_bins,
int** sample_non_zero_indices,
double** sample_values,
const int* num_per_col,
int num_sample_col,
size_t total_sample_cnt,
const Config& io_config);
/*! \brief Destructor */
LIGHTGBM_EXPORT ~Dataset();
/*!
* \brief Initialize from the given reference
* \param num_data Number of data
* \param reference Reference dataset
*/
LIGHTGBM_EXPORT void InitByReference(data_size_t num_data, const Dataset* reference) {
metadata_.InitByReference(num_data, &reference->metadata());
}
LIGHTGBM_EXPORT void InitStreaming(data_size_t num_data,
int32_t has_weights,
int32_t has_init_scores,
int32_t has_queries,
int32_t nclasses,
int32_t nthreads,
int32_t omp_max_threads) {
// Initialize optional max thread count with either parameter or OMP setting
if (omp_max_threads > 0) {
omp_max_threads_ = omp_max_threads;
} else if (omp_max_threads_ <= 0) {
omp_max_threads_ = OMP_NUM_THREADS();
}
metadata_.Init(num_data, has_weights, has_init_scores, has_queries, nclasses);
for (int i = 0; i < num_groups_; ++i) {
feature_groups_[i]->InitStreaming(nthreads, omp_max_threads_);
}
}
LIGHTGBM_EXPORT bool CheckAlign(const Dataset& other) const {
if (num_features_ != other.num_features_) {
return false;
}
if (num_total_features_ != other.num_total_features_) {
return false;
}
if (label_idx_ != other.label_idx_) {
return false;
}
for (int i = 0; i < num_features_; ++i) {
if (!FeatureBinMapper(i)->CheckAlign(*(other.FeatureBinMapper(i)))) {
return false;
}
}
return true;
}
inline void FinishOneRow(int tid, data_size_t row_idx, const std::vector<bool>& is_feature_added) {
if (is_finish_load_) { return; }
for (auto fidx : feature_need_push_zeros_) {
if (is_feature_added[fidx]) { continue; }
const int group = feature2group_[fidx];
const int sub_feature = feature2subfeature_[fidx];
feature_groups_[group]->PushData(tid, sub_feature, row_idx, 0.0f);
}
}
inline void PushOneValue(int tid, data_size_t row_idx, size_t col_idx, double value) {
if (this->is_finish_load_)
return;
auto feature_idx = this->used_feature_map_[col_idx];
if (feature_idx >= 0) {
auto group = this->feature2group_[feature_idx];
auto sub_feature = this->feature2subfeature_[feature_idx];
this->feature_groups_[group]->PushData(tid, sub_feature, row_idx, value);
if (this->has_raw_) {
auto feat_ind = numeric_feature_map_[feature_idx];
if (feat_ind >= 0) {
raw_data_[feat_ind][row_idx] = static_cast<float>(value);
}
}
}
}
inline void PushOneRow(int tid, data_size_t row_idx, const std::vector<double>& feature_values) {
for (size_t i = 0; i < feature_values.size() && i < static_cast<size_t>(num_total_features_); ++i) {
this->PushOneValue(tid, row_idx, i, feature_values[i]);
}
}
inline void PushOneRow(int tid, data_size_t row_idx, const std::vector<std::pair<int, double>>& feature_values) {
if (is_finish_load_) { return; }
std::vector<bool> is_feature_added(num_features_, false);
for (auto& inner_data : feature_values) {
if (inner_data.first >= num_total_features_) { continue; }
int feature_idx = used_feature_map_[inner_data.first];
if (feature_idx >= 0) {
is_feature_added[feature_idx] = true;
const int group = feature2group_[feature_idx];
const int sub_feature = feature2subfeature_[feature_idx];
feature_groups_[group]->PushData(tid, sub_feature, row_idx, inner_data.second);
if (has_raw_) {
int feat_ind = numeric_feature_map_[feature_idx];
if (feat_ind >= 0) {
raw_data_[feat_ind][row_idx] = static_cast<float>(inner_data.second);
}
}
}
}
FinishOneRow(tid, row_idx, is_feature_added);
}
inline void PushOneData(int tid, data_size_t row_idx, int group, int feature_idx, int sub_feature, double value) {
feature_groups_[group]->PushData(tid, sub_feature, row_idx, value);
if (has_raw_) {
int feat_ind = numeric_feature_map_[feature_idx];
if (feat_ind >= 0) {
raw_data_[feat_ind][row_idx] = static_cast<float>(value);
}
}
}
inline void InsertMetadataAt(data_size_t start_index,
data_size_t count,
const label_t* labels,
const label_t* weights,
const double* init_scores,
const data_size_t* queries) {
metadata_.InsertAt(start_index, count, labels, weights, init_scores, queries);
}
inline int RealFeatureIndex(int fidx) const {
return real_feature_idx_[fidx];
}
inline int InnerFeatureIndex(int col_idx) const {
return used_feature_map_[col_idx];
}
inline int Feature2Group(int feature_idx) const {
return feature2group_[feature_idx];
}
inline int Feture2SubFeature(int feature_idx) const {
return feature2subfeature_[feature_idx];
}
inline uint64_t GroupBinBoundary(int group_idx) const {
return group_bin_boundaries_[group_idx];
}
inline uint64_t NumTotalBin() const {
return group_bin_boundaries_.back();
}
inline std::vector<int> ValidFeatureIndices() const {
std::vector<int> ret;
for (int i = 0; i < num_total_features_; ++i) {
if (used_feature_map_[i] >= 0) {
ret.push_back(i);
}
}
return ret;
}
void ReSize(data_size_t num_data);
void CopySubrow(const Dataset* fullset, const data_size_t* used_indices, data_size_t num_used_indices, bool need_meta_data);
MultiValBin* GetMultiBinFromSparseFeatures(const std::vector<uint32_t>& offsets) const;
MultiValBin* GetMultiBinFromAllFeatures(const std::vector<uint32_t>& offsets) const;
template <bool USE_QUANT_GRAD, int HIST_BITS>
TrainingShareStates* GetShareStates(
score_t* gradients, score_t* hessians,
const std::vector<int8_t>& is_feature_used, bool is_constant_hessian,
bool force_col_wise, bool force_row_wise, const int num_grad_quant_bins) const;
LIGHTGBM_EXPORT void FinishLoad();
bool SetFieldFromArrow(const char* field_name, const ArrowChunkedArray& ca);
LIGHTGBM_EXPORT bool SetFloatField(const char* field_name, const float* field_data, data_size_t num_element);
LIGHTGBM_EXPORT bool SetDoubleField(const char* field_name, const double* field_data, data_size_t num_element);
LIGHTGBM_EXPORT bool SetIntField(const char* field_name, const int* field_data, data_size_t num_element);
LIGHTGBM_EXPORT bool GetFloatField(const char* field_name, data_size_t* out_len, const float** out_ptr);
LIGHTGBM_EXPORT bool GetDoubleField(const char* field_name, data_size_t* out_len, const double** out_ptr);
LIGHTGBM_EXPORT bool GetIntField(const char* field_name, data_size_t* out_len, const int** out_ptr);
/*!
* \brief Save current dataset into binary file, will save to "filename.bin"
*/
LIGHTGBM_EXPORT void SaveBinaryFile(const char* bin_filename);
/*!
* \brief Serialize the overall Dataset definition/schema to a binary buffer (i.e., without data)
*/
LIGHTGBM_EXPORT void SerializeReference(ByteBuffer* out);
LIGHTGBM_EXPORT void DumpTextFile(const char* text_filename);
LIGHTGBM_EXPORT void CopyFeatureMapperFrom(const Dataset* dataset);
LIGHTGBM_EXPORT void CreateValid(const Dataset* dataset);
void InitTrain(const std::vector<int8_t>& is_feature_used,
TrainingShareStates* share_state) const;
template <bool USE_INDICES, bool USE_HESSIAN, bool USE_QUANT_GRAD, int HIST_BITS>
void ConstructHistogramsInner(const std::vector<int8_t>& is_feature_used,
const data_size_t* data_indices,
data_size_t num_data, const score_t* gradients,
const score_t* hessians,
score_t* ordered_gradients,
score_t* ordered_hessians,
TrainingShareStates* share_state,
hist_t* hist_data) const;
template <bool USE_INDICES, bool ORDERED, bool USE_QUANT_GRAD, int HIST_BITS>
void ConstructHistogramsMultiVal(const data_size_t* data_indices,
data_size_t num_data,
const score_t* gradients,
const score_t* hessians,
TrainingShareStates* share_state,
hist_t* hist_data) const;
template <bool USE_QUANT_GRAD, int HIST_BITS>
inline void ConstructHistograms(
const std::vector<int8_t>& is_feature_used,
const data_size_t* data_indices, data_size_t num_data,
const score_t* gradients, const score_t* hessians,
score_t* ordered_gradients, score_t* ordered_hessians,
TrainingShareStates* share_state, hist_t* hist_data) const {
if (num_data <= 0) {
return;
}
bool use_indices = data_indices != nullptr && (num_data < num_data_);
if (share_state->is_constant_hessian) {
if (use_indices) {
ConstructHistogramsInner<true, false, USE_QUANT_GRAD, HIST_BITS>(
is_feature_used, data_indices, num_data, gradients, hessians,
ordered_gradients, ordered_hessians, share_state, hist_data);
} else {
ConstructHistogramsInner<false, false, USE_QUANT_GRAD, HIST_BITS>(
is_feature_used, data_indices, num_data, gradients, hessians,
ordered_gradients, ordered_hessians, share_state, hist_data);
}
} else {
if (use_indices) {
ConstructHistogramsInner<true, true, USE_QUANT_GRAD, HIST_BITS>(
is_feature_used, data_indices, num_data, gradients, hessians,
ordered_gradients, ordered_hessians, share_state, hist_data);
} else {
ConstructHistogramsInner<false, true, USE_QUANT_GRAD, HIST_BITS>(
is_feature_used, data_indices, num_data, gradients, hessians,
ordered_gradients, ordered_hessians, share_state, hist_data);
}
}
}
void FixHistogram(int feature_idx, double sum_gradient, double sum_hessian, hist_t* data) const;
template <typename PACKED_HIST_BIN_T, typename PACKED_HIST_ACC_T, int HIST_BITS_BIN, int HIST_BITS_ACC>
void FixHistogramInt(int feature_idx, int64_t sum_gradient_and_hessian, hist_t* data) const;
inline data_size_t Split(int feature, const uint32_t* threshold,
int num_threshold, bool default_left,
const data_size_t* data_indices,
data_size_t cnt, data_size_t* lte_indices,
data_size_t* gt_indices) const {
const int group = feature2group_[feature];
const int sub_feature = feature2subfeature_[feature];
return feature_groups_[group]->Split(
sub_feature, threshold, num_threshold, default_left, data_indices,
cnt, lte_indices, gt_indices);
}
inline int SubFeatureBinOffset(int i) const {
const int sub_feature = feature2subfeature_[i];
if (sub_feature == 0) {
return 1;
} else {
return 0;
}
}
inline int FeatureNumBin(int i) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
return feature_groups_[group]->bin_mappers_[sub_feature]->num_bin();
}
inline int FeatureGroupNumBin(int group) const {
return feature_groups_[group]->num_total_bin_;
}
inline const BinMapper* FeatureBinMapper(int i) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
return feature_groups_[group]->bin_mappers_[sub_feature].get();
}
inline const Bin* FeatureGroupBin(int group) const {
return feature_groups_[group]->bin_data_.get();
}
inline BinIterator* FeatureIterator(int i) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
return feature_groups_[group]->SubFeatureIterator(sub_feature);
}
inline BinIterator* FeatureGroupIterator(int group) const {
return feature_groups_[group]->FeatureGroupIterator();
}
inline bool IsMultiGroup(int i) const {
return feature_groups_[i]->is_multi_val_;
}
inline size_t FeatureGroupSizesInByte(int group) const {
return feature_groups_[group]->FeatureGroupSizesInByte();
}
inline void* FeatureGroupData(int group) const {
return feature_groups_[group]->FeatureGroupData();
}
const void* GetColWiseData(
const int feature_group_index,
const int sub_feature_index,
uint8_t* bit_type,
bool* is_sparse,
std::vector<BinIterator*>* bin_iterator,
const int num_threads) const;
const void* GetColWiseData(
const int feature_group_index,
const int sub_feature_index,
uint8_t* bit_type,
bool* is_sparse,
BinIterator** bin_iterator) const;
inline double RealThreshold(int i, uint32_t threshold) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
return feature_groups_[group]->bin_mappers_[sub_feature]->BinToValue(threshold);
}
// given a real threshold, find the closest threshold bin
inline uint32_t BinThreshold(int i, double threshold_double) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
return feature_groups_[group]->bin_mappers_[sub_feature]->ValueToBin(threshold_double);
}
inline int MaxRealCatValue(int i) const {
const int group = feature2group_[i];
const int sub_feature = feature2subfeature_[i];
return feature_groups_[group]->bin_mappers_[sub_feature]->MaxCatValue();
}
/*!
* \brief Get meta data pointer
* \return Pointer of meta data
*/
inline const Metadata& metadata() const { return metadata_; }
/*! \brief Get Number of used features */
inline int num_features() const { return num_features_; }
/*! \brief Get number of numeric features */
inline int num_numeric_features() const { return num_numeric_features_; }
/*! \brief Get Number of feature groups */
inline int num_feature_groups() const { return num_groups_;}
/*! \brief Get Number of total features */
inline int num_total_features() const { return num_total_features_; }
/*! \brief Get the index of label column */
inline int label_idx() const { return label_idx_; }
/*! \brief Get names of current data set */
inline const std::vector<std::string>& feature_names() const { return feature_names_; }
/*! \brief Get content of parser config file */
inline const std::string parser_config_str() const { return parser_config_str_; }
inline void set_feature_names(const std::vector<std::string>& feature_names) {
if (feature_names.size() != static_cast<size_t>(num_total_features_)) {
Log::Fatal("Size of feature_names error, should equal with total number of features");
}
feature_names_ = std::vector<std::string>(feature_names);
std::unordered_set<std::string> feature_name_set;
// replace ' ' in feature_names with '_'
bool spaceInFeatureName = false;
for (auto& feature_name : feature_names_) {
// check JSON
if (!Common::CheckAllowedJSON(feature_name)) {
Log::Fatal("Do not support special JSON characters in feature name.");
}
if (feature_name.find(' ') != std::string::npos) {
spaceInFeatureName = true;
std::replace(feature_name.begin(), feature_name.end(), ' ', '_');
}
if (feature_name_set.count(feature_name) > 0) {
Log::Fatal("Feature (%s) appears more than one time.", feature_name.c_str());
}
feature_name_set.insert(feature_name);
}
if (spaceInFeatureName) {
Log::Warning("Found whitespace in feature_names, replace with underlines");
}
}
inline std::vector<std::string> feature_infos() const {
std::vector<std::string> bufs;
for (int i = 0; i < num_total_features_; ++i) {
int fidx = used_feature_map_[i];
if (fidx < 0) {
bufs.push_back("none");
} else {
const auto bin_mapper = FeatureBinMapper(fidx);
bufs.push_back(bin_mapper->bin_info_string());
}
}
return bufs;
}
/*! \brief Get Number of data */
inline data_size_t num_data() const { return num_data_; }
/*! \brief Get whether FinishLoad is automatically called when pushing last row. */
inline bool wait_for_manual_finish() const { return wait_for_manual_finish_; }
/*! \brief Get the maximum number of OpenMP threads to allocate for. */
inline int omp_max_threads() const { return omp_max_threads_; }
/*! \brief Set whether the Dataset is finished automatically when last row is pushed or with a manual
* MarkFinished API call. Set to true for thread-safe streaming and/or if will be coalesced later.
* FinishLoad should not be called on any Dataset that will be coalesced.
*/
inline void set_wait_for_manual_finish(bool value) {
std::lock_guard<std::mutex> lock(mutex_);
wait_for_manual_finish_ = value;
}
/*! \brief Disable copy */
Dataset& operator=(const Dataset&) = delete;
/*! \brief Disable copy */
Dataset(const Dataset&) = delete;
void AddFeaturesFrom(Dataset* other);
/*! \brief Get has_raw_ */
inline bool has_raw() const { return has_raw_; }
/*! \brief Set has_raw_ */
inline void SetHasRaw(bool has_raw) { has_raw_ = has_raw; }
/*! \brief Resize raw_data_ */
inline void ResizeRaw(int num_rows) {
if (static_cast<int>(raw_data_.size()) > num_numeric_features_) {
raw_data_.resize(num_numeric_features_);
}
for (size_t i = 0; i < raw_data_.size(); ++i) {
raw_data_[i].resize(num_rows);
}
int curr_size = static_cast<int>(raw_data_.size());
for (int i = curr_size; i < num_numeric_features_; ++i) {
raw_data_.push_back(std::vector<float>(num_rows, 0));
}
}
/*! \brief Get pointer to raw_data_ feature */
inline const float* raw_index(int feat_ind) const {
return raw_data_[numeric_feature_map_[feat_ind]].data();
}
inline uint32_t feature_max_bin(const int inner_feature_index) const {
const int feature_group_index = Feature2Group(inner_feature_index);
const int sub_feature_index = feature2subfeature_[inner_feature_index];
return feature_groups_[feature_group_index]->feature_max_bin(sub_feature_index);
}
inline uint32_t feature_min_bin(const int inner_feature_index) const {
const int feature_group_index = Feature2Group(inner_feature_index);
const int sub_feature_index = feature2subfeature_[inner_feature_index];
return feature_groups_[feature_group_index]->feature_min_bin(sub_feature_index);
}
#ifdef USE_CUDA
const CUDAColumnData* cuda_column_data() const {
return cuda_column_data_.get();
}
#endif // USE_CUDA
private:
void SerializeHeader(BinaryWriter* serializer);
size_t GetSerializedHeaderSize();
void CreateCUDAColumnData();
std::string data_filename_;
/*! \brief Store used features */
std::vector<std::unique_ptr<FeatureGroup>> feature_groups_;