-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathlgb.Booster.R
1073 lines (879 loc) · 30.5 KB
/
lgb.Booster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#' @importFrom R6 R6Class
Booster <- R6::R6Class(
classname = "lgb.Booster",
cloneable = FALSE,
public = list(
best_iter = -1L,
best_score = NA_real_,
params = list(),
record_evals = list(),
# Finalize will free up the handles
finalize = function() {
# Check the need for freeing handle
if (!lgb.is.null.handle(x = private$handle)) {
# Freeing up handle
lgb.call(fun_name = "LGBM_BoosterFree_R", ret = NULL, private$handle)
private$handle <- NULL
}
return(invisible(NULL))
},
# Initialize will create a starter booster
initialize = function(params = list(),
train_set = NULL,
modelfile = NULL,
model_str = NULL,
...) {
# Create parameters and handle
params <- append(params, list(...))
handle <- lgb.null.handle()
# Attempts to create a handle for the dataset
try({
# Check if training dataset is not null
if (!is.null(train_set)) {
# Check if training dataset is lgb.Dataset or not
if (!lgb.check.r6.class(object = train_set, name = "lgb.Dataset")) {
stop("lgb.Booster: Can only use lgb.Dataset as training data")
}
train_set_handle <- train_set$.__enclos_env__$private$get_handle()
params <- modifyList(params, train_set$get_params())
params_str <- lgb.params2str(params = params)
# Store booster handle
handle <- lgb.call(
fun_name = "LGBM_BoosterCreate_R"
, ret = handle
, train_set_handle
, params_str
)
# Create private booster information
private$train_set <- train_set
private$train_set_version <- train_set$.__enclos_env__$private$version
private$num_dataset <- 1L
private$init_predictor <- train_set$.__enclos_env__$private$predictor
# Check if predictor is existing
if (!is.null(private$init_predictor)) {
# Merge booster
lgb.call(
fun_name = "LGBM_BoosterMerge_R"
, ret = NULL
, handle
, private$init_predictor$.__enclos_env__$private$handle
)
}
# Check current iteration
private$is_predicted_cur_iter <- c(private$is_predicted_cur_iter, FALSE)
} else if (!is.null(modelfile)) {
# Do we have a model file as character?
if (!is.character(modelfile)) {
stop("lgb.Booster: Can only use a string as model file path")
}
# Create booster from model
handle <- lgb.call(
fun_name = "LGBM_BoosterCreateFromModelfile_R"
, ret = handle
, lgb.c_str(x = modelfile)
)
} else if (!is.null(model_str)) {
# Do we have a model_str as character?
if (!is.character(model_str)) {
stop("lgb.Booster: Can only use a string as model_str")
}
# Create booster from model
handle <- lgb.call(
fun_name = "LGBM_BoosterLoadModelFromString_R"
, ret = handle
, lgb.c_str(x = model_str)
)
} else {
# Booster non existent
stop(
"lgb.Booster: Need at least either training dataset, "
, "model file, or model_str to create booster instance"
)
}
})
# Check whether the handle was created properly if it was not stopped earlier by a stop call
if (isTRUE(lgb.is.null.handle(x = handle))) {
stop("lgb.Booster: cannot create Booster handle")
} else {
# Create class
class(handle) <- "lgb.Booster.handle"
private$handle <- handle
private$num_class <- 1L
private$num_class <- lgb.call(
fun_name = "LGBM_BoosterGetNumClasses_R"
, ret = private$num_class
, private$handle
)
}
self$params <- params
return(invisible(NULL))
},
# Set training data name
set_train_data_name = function(name) {
# Set name
private$name_train_set <- name
return(invisible(self))
},
# Add validation data
add_valid = function(data, name) {
# Check if data is lgb.Dataset
if (!lgb.check.r6.class(object = data, name = "lgb.Dataset")) {
stop("lgb.Booster.add_valid: Can only use lgb.Dataset as validation data")
}
# Check if predictors are identical
if (!identical(data$.__enclos_env__$private$predictor, private$init_predictor)) {
stop(
"lgb.Booster.add_valid: Failed to add validation data; "
, "you should use the same predictor for these data"
)
}
# Check if names are character
if (!is.character(name)) {
stop("lgb.Booster.add_valid: Can only use characters as data name")
}
# Add validation data to booster
lgb.call(
fun_name = "LGBM_BoosterAddValidData_R"
, ret = NULL
, private$handle
, data$.__enclos_env__$private$get_handle()
)
# Store private information
private$valid_sets <- c(private$valid_sets, data)
private$name_valid_sets <- c(private$name_valid_sets, name)
private$num_dataset <- private$num_dataset + 1L
private$is_predicted_cur_iter <- c(private$is_predicted_cur_iter, FALSE)
return(invisible(self))
},
# Reset parameters of booster
reset_parameter = function(params, ...) {
if (methods::is(self$params, "list")) {
params <- modifyList(self$params, params)
}
params <- modifyList(params, list(...))
params_str <- lgb.params2str(params = params)
lgb.call(
fun_name = "LGBM_BoosterResetParameter_R"
, ret = NULL
, private$handle
, params_str
)
self$params <- params
return(invisible(self))
},
# Perform boosting update iteration
update = function(train_set = NULL, fobj = NULL) {
if (is.null(train_set)) {
if (private$train_set$.__enclos_env__$private$version != private$train_set_version) {
train_set <- private$train_set
}
}
# Check if training set is not null
if (!is.null(train_set)) {
# Check if training set is lgb.Dataset
if (!lgb.check.r6.class(object = train_set, name = "lgb.Dataset")) {
stop("lgb.Booster.update: Only can use lgb.Dataset as training data")
}
# Check if predictors are identical
if (!identical(train_set$predictor, private$init_predictor)) {
stop("lgb.Booster.update: Change train_set failed, you should use the same predictor for these data")
}
# Reset training data on booster
lgb.call(
fun_name = "LGBM_BoosterResetTrainingData_R"
, ret = NULL
, private$handle
, train_set$.__enclos_env__$private$get_handle()
)
# Store private train set
private$train_set <- train_set
private$train_set_version <- train_set$.__enclos_env__$private$version
}
# Check if objective is empty
if (is.null(fobj)) {
if (private$set_objective_to_none) {
stop("lgb.Booster.update: cannot update due to null objective function")
}
# Boost iteration from known objective
ret <- lgb.call(
fun_name = "LGBM_BoosterUpdateOneIter_R"
, ret = NULL
, private$handle
)
} else {
# Check if objective is function
if (!is.function(fobj)) {
stop("lgb.Booster.update: fobj should be a function")
}
if (!private$set_objective_to_none) {
self$reset_parameter(params = list(objective = "none"))
private$set_objective_to_none <- TRUE
}
# Perform objective calculation
gpair <- fobj(private$inner_predict(1L), private$train_set)
# Check for gradient and hessian as list
if (is.null(gpair$grad) || is.null(gpair$hess)) {
stop("lgb.Booster.update: custom objective should
return a list with attributes (hess, grad)")
}
# Return custom boosting gradient/hessian
ret <- lgb.call(
fun_name = "LGBM_BoosterUpdateOneIterCustom_R"
, ret = NULL
, private$handle
, gpair$grad
, gpair$hess
, length(gpair$grad)
)
}
# Loop through each iteration
for (i in seq_along(private$is_predicted_cur_iter)) {
private$is_predicted_cur_iter[[i]] <- FALSE
}
return(ret)
},
# Return one iteration behind
rollback_one_iter = function() {
# Return one iteration behind
lgb.call(
fun_name = "LGBM_BoosterRollbackOneIter_R"
, ret = NULL
, private$handle
)
# Loop through each iteration
for (i in seq_along(private$is_predicted_cur_iter)) {
private$is_predicted_cur_iter[[i]] <- FALSE
}
return(invisible(self))
},
# Get current iteration
current_iter = function() {
cur_iter <- 0L
return(
lgb.call(
fun_name = "LGBM_BoosterGetCurrentIteration_R"
, ret = cur_iter
, private$handle
)
)
},
# Get upper bound
upper_bound = function() {
upper_bound <- 0.0
return(
lgb.call(
fun_name = "LGBM_BoosterGetUpperBoundValue_R"
, ret = upper_bound
, private$handle
)
)
},
# Get lower bound
lower_bound = function() {
lower_bound <- 0.0
return(
lgb.call(
fun_name = "LGBM_BoosterGetLowerBoundValue_R"
, ret = lower_bound
, private$handle
)
)
},
# Evaluate data on metrics
eval = function(data, name, feval = NULL) {
# Check if dataset is lgb.Dataset
if (!lgb.check.r6.class(object = data, name = "lgb.Dataset")) {
stop("lgb.Booster.eval: Can only use lgb.Dataset to eval")
}
# Check for identical data
data_idx <- 0L
if (identical(data, private$train_set)) {
data_idx <- 1L
} else {
# Check for validation data
if (length(private$valid_sets) > 0L) {
# Loop through each validation set
for (i in seq_along(private$valid_sets)) {
# Check for identical validation data with training data
if (identical(data, private$valid_sets[[i]])) {
# Found identical data, skip
data_idx <- i + 1L
break
}
}
}
}
# Check if evaluation was not done
if (data_idx == 0L) {
# Add validation data by name
self$add_valid(data, name)
data_idx <- private$num_dataset
}
# Evaluate data
return(
private$inner_eval(
data_name = name
, data_idx = data_idx
, feval = feval
)
)
},
# Evaluation training data
eval_train = function(feval = NULL) {
return(private$inner_eval(private$name_train_set, 1L, feval))
},
# Evaluation validation data
eval_valid = function(feval = NULL) {
# Create ret list
ret <- list()
# Check if validation is empty
if (length(private$valid_sets) <= 0L) {
return(ret)
}
# Loop through each validation set
for (i in seq_along(private$valid_sets)) {
ret <- append(
x = ret
, values = private$inner_eval(private$name_valid_sets[[i]], i + 1L, feval)
)
}
return(ret)
},
# Save model
save_model = function(filename, num_iteration = NULL, feature_importance_type = 0L) {
# Check if number of iteration is non existent
if (is.null(num_iteration)) {
num_iteration <- self$best_iter
}
# Save booster model
lgb.call(
fun_name = "LGBM_BoosterSaveModel_R"
, ret = NULL
, private$handle
, as.integer(num_iteration)
, as.integer(feature_importance_type)
, lgb.c_str(x = filename)
)
return(invisible(self))
},
# Save model to string
save_model_to_string = function(num_iteration = NULL, feature_importance_type = 0L) {
# Check if number of iteration is non existent
if (is.null(num_iteration)) {
num_iteration <- self$best_iter
}
# Return model string
return(
lgb.call.return.str(
fun_name = "LGBM_BoosterSaveModelToString_R"
, private$handle
, as.integer(num_iteration)
, as.integer(feature_importance_type)
)
)
},
# Dump model in memory
dump_model = function(num_iteration = NULL, feature_importance_type = 0L) {
# Check if number of iteration is non existent
if (is.null(num_iteration)) {
num_iteration <- self$best_iter
}
return(
lgb.call.return.str(
fun_name = "LGBM_BoosterDumpModel_R"
, private$handle
, as.integer(num_iteration)
, as.integer(feature_importance_type)
)
)
},
# Predict on new data
predict = function(data,
start_iteration = NULL,
num_iteration = NULL,
rawscore = FALSE,
predleaf = FALSE,
predcontrib = FALSE,
header = FALSE,
reshape = FALSE, ...) {
# Check if number of iteration is non existent
if (is.null(num_iteration)) {
num_iteration <- self$best_iter
}
# Check if start iteration is non existent
if (is.null(start_iteration)) {
start_iteration <- 0L
}
# Predict on new data
predictor <- Predictor$new(private$handle, ...)
return(
predictor$predict(
data = data
, start_iteration = start_iteration
, num_iteration = num_iteration
, rawscore = rawscore
, predleaf = predleaf
, predcontrib = predcontrib
, header = header
, reshape = reshape
)
)
},
# Transform into predictor
to_predictor = function() {
return(Predictor$new(private$handle))
},
# Used for save
raw = NA,
# Save model to temporary file for in-memory saving
save = function() {
# Overwrite model in object
self$raw <- self$save_model_to_string(NULL)
return(invisible(NULL))
}
),
private = list(
handle = NULL,
train_set = NULL,
name_train_set = "training",
valid_sets = list(),
name_valid_sets = list(),
predict_buffer = list(),
is_predicted_cur_iter = list(),
num_class = 1L,
num_dataset = 0L,
init_predictor = NULL,
eval_names = NULL,
higher_better_inner_eval = NULL,
set_objective_to_none = FALSE,
train_set_version = 0L,
# Predict data
inner_predict = function(idx) {
# Store data name
data_name <- private$name_train_set
# Check for id bigger than 1
if (idx > 1L) {
data_name <- private$name_valid_sets[[idx - 1L]]
}
# Check for unknown dataset (over the maximum provided range)
if (idx > private$num_dataset) {
stop("data_idx should not be greater than num_dataset")
}
# Check for prediction buffer
if (is.null(private$predict_buffer[[data_name]])) {
# Store predictions
npred <- 0L
npred <- lgb.call(
fun_name = "LGBM_BoosterGetNumPredict_R"
, ret = npred
, private$handle
, as.integer(idx - 1L)
)
private$predict_buffer[[data_name]] <- numeric(npred)
}
# Check if current iteration was already predicted
if (!private$is_predicted_cur_iter[[idx]]) {
# Use buffer
private$predict_buffer[[data_name]] <- lgb.call(
fun_name = "LGBM_BoosterGetPredict_R"
, ret = private$predict_buffer[[data_name]]
, private$handle
, as.integer(idx - 1L)
)
private$is_predicted_cur_iter[[idx]] <- TRUE
}
return(private$predict_buffer[[data_name]])
},
# Get evaluation information
get_eval_info = function() {
# Check for evaluation names emptiness
if (is.null(private$eval_names)) {
# Get evaluation names
names <- lgb.call.return.str(
fun_name = "LGBM_BoosterGetEvalNames_R"
, private$handle
)
# Check names' length
if (nchar(names) > 0L) {
# Parse and store privately names
names <- strsplit(names, "\t")[[1L]]
private$eval_names <- names
# some metrics don't map cleanly to metric names, for example "ndcg@1" is just the
# ndcg metric evaluated at the first "query result" in learning-to-rank
metric_names <- gsub("@.*", "", names)
private$higher_better_inner_eval <- .METRICS_HIGHER_BETTER()[metric_names]
}
}
return(private$eval_names)
},
# Perform inner evaluation
inner_eval = function(data_name, data_idx, feval = NULL) {
# Check for unknown dataset (over the maximum provided range)
if (data_idx > private$num_dataset) {
stop("data_idx should not be greater than num_dataset")
}
# Get evaluation information
private$get_eval_info()
# Prepare return
ret <- list()
# Check evaluation names existence
if (length(private$eval_names) > 0L) {
# Create evaluation values
tmp_vals <- numeric(length(private$eval_names))
tmp_vals <- lgb.call(
fun_name = "LGBM_BoosterGetEval_R"
, ret = tmp_vals
, private$handle
, as.integer(data_idx - 1L)
)
# Loop through all evaluation names
for (i in seq_along(private$eval_names)) {
# Store evaluation and append to return
res <- list()
res$data_name <- data_name
res$name <- private$eval_names[i]
res$value <- tmp_vals[i]
res$higher_better <- private$higher_better_inner_eval[i]
ret <- append(ret, list(res))
}
}
# Check if there are evaluation metrics
if (!is.null(feval)) {
# Check if evaluation metric is a function
if (!is.function(feval)) {
stop("lgb.Booster.eval: feval should be a function")
}
# Prepare data
data <- private$train_set
# Check if data to assess is existing differently
if (data_idx > 1L) {
data <- private$valid_sets[[data_idx - 1L]]
}
# Perform function evaluation
res <- feval(private$inner_predict(data_idx), data)
# Check for name correctness
if (is.null(res$name) || is.null(res$value) || is.null(res$higher_better)) {
stop("lgb.Booster.eval: custom eval function should return a
list with attribute (name, value, higher_better)");
}
# Append names and evaluation
res$data_name <- data_name
ret <- append(ret, list(res))
}
return(ret)
}
)
)
#' @name predict.lgb.Booster
#' @title Predict method for LightGBM model
#' @description Predicted values based on class \code{lgb.Booster}
#' @param object Object of class \code{lgb.Booster}
#' @param data a \code{matrix} object, a \code{dgCMatrix} object or a character representing a filename
#' @param start_iteration int or None, optional (default=None)
#' Start index of the iteration to predict.
#' If None or <= 0, starts from the first iteration.
#' @param num_iteration int or None, optional (default=None)
#' Limit number of iterations in the prediction.
#' If None, if the best iteration exists and start_iteration is None or <= 0, the
#' best iteration is used; otherwise, all iterations from start_iteration are used.
#' If <= 0, all iterations from start_iteration are used (no limits).
#' @param rawscore whether the prediction should be returned in the for of original untransformed
#' sum of predictions from boosting iterations' results. E.g., setting \code{rawscore=TRUE}
#' for logistic regression would result in predictions for log-odds instead of probabilities.
#' @param predleaf whether predict leaf index instead.
#' @param predcontrib return per-feature contributions for each record.
#' @param header only used for prediction for text file. True if text file has header
#' @param reshape whether to reshape the vector of predictions to a matrix form when there are several
#' prediction outputs per case.
#' @param ... Additional named arguments passed to the \code{predict()} method of
#' the \code{lgb.Booster} object passed to \code{object}.
#' @return For regression or binary classification, it returns a vector of length \code{nrows(data)}.
#' For multiclass classification, either a \code{num_class * nrows(data)} vector or
#' a \code{(nrows(data), num_class)} dimension matrix is returned, depending on
#' the \code{reshape} value.
#'
#' When \code{predleaf = TRUE}, the output is a matrix object with the
#' number of columns corresponding to the number of trees.
#'
#' @examples
#' \donttest{
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' )
#' preds <- predict(model, test$data)
#' }
#' @export
predict.lgb.Booster <- function(object,
data,
start_iteration = NULL,
num_iteration = NULL,
rawscore = FALSE,
predleaf = FALSE,
predcontrib = FALSE,
header = FALSE,
reshape = FALSE,
...) {
if (!lgb.is.Booster(x = object)) {
stop("predict.lgb.Booster: object should be an ", sQuote("lgb.Booster"))
}
# Return booster predictions
return(
object$predict(
data = data
, start_iteration = start_iteration
, num_iteration = num_iteration
, rawscore = rawscore
, predleaf = predleaf
, predcontrib = predcontrib
, header = header
, reshape = reshape
, ...
)
)
}
#' @name lgb.load
#' @title Load LightGBM model
#' @description Load LightGBM takes in either a file path or model string.
#' If both are provided, Load will default to loading from file
#' @param filename path of model file
#' @param model_str a str containing the model
#'
#' @return lgb.Booster
#'
#' @examples
#' \donttest{
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 3L
#' )
#' model_file <- tempfile(fileext = ".txt")
#' lgb.save(model, model_file)
#' load_booster <- lgb.load(filename = model_file)
#' model_string <- model$save_model_to_string(NULL) # saves best iteration
#' load_booster_from_str <- lgb.load(model_str = model_string)
#' }
#' @export
lgb.load <- function(filename = NULL, model_str = NULL) {
filename_provided <- !is.null(filename)
model_str_provided <- !is.null(model_str)
if (filename_provided) {
if (!is.character(filename)) {
stop("lgb.load: filename should be character")
}
if (!file.exists(filename)) {
stop(sprintf("lgb.load: file '%s' passed to filename does not exist", filename))
}
return(invisible(Booster$new(modelfile = filename)))
}
if (model_str_provided) {
if (!is.character(model_str)) {
stop("lgb.load: model_str should be character")
}
return(invisible(Booster$new(model_str = model_str)))
}
stop("lgb.load: either filename or model_str must be given")
}
#' @name lgb.save
#' @title Save LightGBM model
#' @description Save LightGBM model
#' @param booster Object of class \code{lgb.Booster}
#' @param filename saved filename
#' @param num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration
#'
#' @return lgb.Booster
#'
#' @examples
#' \donttest{
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' lgb.save(model, tempfile(fileext = ".txt"))
#' }
#' @export
lgb.save <- function(booster, filename, num_iteration = NULL) {
if (!lgb.is.Booster(x = booster)) {
stop("lgb.save: booster should be an ", sQuote("lgb.Booster"))
}
if (!(is.character(filename) && length(filename) == 1L)) {
stop("lgb.save: filename should be a string")
}
# Store booster
return(
invisible(booster$save_model(
filename = filename
, num_iteration = num_iteration
))
)
}
#' @name lgb.dump
#' @title Dump LightGBM model to json
#' @description Dump LightGBM model to json
#' @param booster Object of class \code{lgb.Booster}
#' @param num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration
#'
#' @return json format of model
#'
#' @examples
#' \donttest{
#' library(lightgbm)
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 10L
#' , valids = valids
#' , min_data = 1L
#' , learning_rate = 1.0
#' , early_stopping_rounds = 5L
#' )
#' json_model <- lgb.dump(model)
#' }
#' @export
lgb.dump <- function(booster, num_iteration = NULL) {
if (!lgb.is.Booster(x = booster)) {
stop("lgb.save: booster should be an ", sQuote("lgb.Booster"))
}
# Return booster at requested iteration
return(booster$dump_model(num_iteration = num_iteration))
}
#' @name lgb.get.eval.result
#' @title Get record evaluation result from booster
#' @description Given a \code{lgb.Booster}, return evaluation results for a
#' particular metric on a particular dataset.
#' @param booster Object of class \code{lgb.Booster}
#' @param data_name Name of the dataset to return evaluation results for.
#' @param eval_name Name of the evaluation metric to return results for.
#' @param iters An integer vector of iterations you want to get evaluation results for. If NULL
#' (the default), evaluation results for all iterations will be returned.
#' @param is_err TRUE will return evaluation error instead
#'
#' @return numeric vector of evaluation result
#'
#' @examples
#' \donttest{
#' # train a regression model
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(objective = "regression", metric = "l2")
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids