-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
test_plotting.py
176 lines (152 loc) · 8.66 KB
/
test_plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# coding: utf-8
import unittest
import lightgbm as lgb
from lightgbm.compat import MATPLOTLIB_INSTALLED, GRAPHVIZ_INSTALLED
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
if MATPLOTLIB_INSTALLED:
import matplotlib
matplotlib.use('Agg')
if GRAPHVIZ_INSTALLED:
import graphviz
class TestBasic(unittest.TestCase):
def setUp(self):
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(*load_breast_cancer(return_X_y=True),
test_size=0.1, random_state=1)
self.train_data = lgb.Dataset(self.X_train, self.y_train)
self.params = {
"objective": "binary",
"verbose": -1,
"num_leaves": 3
}
@unittest.skipIf(not MATPLOTLIB_INSTALLED, 'matplotlib is not installed')
def test_plot_importance(self):
gbm0 = lgb.train(self.params, self.train_data, num_boost_round=10)
ax0 = lgb.plot_importance(gbm0)
self.assertIsInstance(ax0, matplotlib.axes.Axes)
self.assertEqual(ax0.get_title(), 'Feature importance')
self.assertEqual(ax0.get_xlabel(), 'Feature importance')
self.assertEqual(ax0.get_ylabel(), 'Features')
self.assertLessEqual(len(ax0.patches), 30)
gbm1 = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True)
gbm1.fit(self.X_train, self.y_train)
ax1 = lgb.plot_importance(gbm1, color='r', title='t', xlabel='x', ylabel='y')
self.assertIsInstance(ax1, matplotlib.axes.Axes)
self.assertEqual(ax1.get_title(), 't')
self.assertEqual(ax1.get_xlabel(), 'x')
self.assertEqual(ax1.get_ylabel(), 'y')
self.assertLessEqual(len(ax1.patches), 30)
for patch in ax1.patches:
self.assertTupleEqual(patch.get_facecolor(), (1., 0, 0, 1.)) # red
ax2 = lgb.plot_importance(gbm0, color=['r', 'y', 'g', 'b'],
title=None, xlabel=None, ylabel=None)
self.assertIsInstance(ax2, matplotlib.axes.Axes)
self.assertEqual(ax2.get_title(), '')
self.assertEqual(ax2.get_xlabel(), '')
self.assertEqual(ax2.get_ylabel(), '')
self.assertLessEqual(len(ax2.patches), 30)
self.assertTupleEqual(ax2.patches[0].get_facecolor(), (1., 0, 0, 1.)) # r
self.assertTupleEqual(ax2.patches[1].get_facecolor(), (.75, .75, 0, 1.)) # y
self.assertTupleEqual(ax2.patches[2].get_facecolor(), (0, .5, 0, 1.)) # g
self.assertTupleEqual(ax2.patches[3].get_facecolor(), (0, 0, 1., 1.)) # b
@unittest.skipIf(not MATPLOTLIB_INSTALLED, 'matplotlib is not installed')
def test_plot_split_value_histogram(self):
gbm0 = lgb.train(self.params, self.train_data, num_boost_round=10)
ax0 = lgb.plot_split_value_histogram(gbm0, 27)
self.assertIsInstance(ax0, matplotlib.axes.Axes)
self.assertEqual(ax0.get_title(), 'Split value histogram for feature with index 27')
self.assertEqual(ax0.get_xlabel(), 'Feature split value')
self.assertEqual(ax0.get_ylabel(), 'Count')
self.assertLessEqual(len(ax0.patches), 2)
gbm1 = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True)
gbm1.fit(self.X_train, self.y_train)
ax1 = lgb.plot_split_value_histogram(gbm1, gbm1.booster_.feature_name()[27], figsize=(10, 5),
title='Histogram for feature @index/name@ @feature@',
xlabel='x', ylabel='y', color='r')
self.assertIsInstance(ax1, matplotlib.axes.Axes)
self.assertEqual(ax1.get_title(),
'Histogram for feature name {}'.format(gbm1.booster_.feature_name()[27]))
self.assertEqual(ax1.get_xlabel(), 'x')
self.assertEqual(ax1.get_ylabel(), 'y')
self.assertLessEqual(len(ax1.patches), 2)
for patch in ax1.patches:
self.assertTupleEqual(patch.get_facecolor(), (1., 0, 0, 1.)) # red
ax2 = lgb.plot_split_value_histogram(gbm0, 27, bins=10, color=['r', 'y', 'g', 'b'],
title=None, xlabel=None, ylabel=None)
self.assertIsInstance(ax2, matplotlib.axes.Axes)
self.assertEqual(ax2.get_title(), '')
self.assertEqual(ax2.get_xlabel(), '')
self.assertEqual(ax2.get_ylabel(), '')
self.assertEqual(len(ax2.patches), 10)
self.assertTupleEqual(ax2.patches[0].get_facecolor(), (1., 0, 0, 1.)) # r
self.assertTupleEqual(ax2.patches[1].get_facecolor(), (.75, .75, 0, 1.)) # y
self.assertTupleEqual(ax2.patches[2].get_facecolor(), (0, .5, 0, 1.)) # g
self.assertTupleEqual(ax2.patches[3].get_facecolor(), (0, 0, 1., 1.)) # b
self.assertRaises(ValueError, lgb.plot_split_value_histogram, gbm0, 0) # was not used in splitting
@unittest.skipIf(not MATPLOTLIB_INSTALLED or not GRAPHVIZ_INSTALLED, 'matplotlib or graphviz is not installed')
def test_plot_tree(self):
gbm = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True)
gbm.fit(self.X_train, self.y_train, verbose=False)
self.assertRaises(IndexError, lgb.plot_tree, gbm, tree_index=83)
ax = lgb.plot_tree(gbm, tree_index=3, figsize=(15, 8), show_info=['split_gain'])
self.assertIsInstance(ax, matplotlib.axes.Axes)
w, h = ax.axes.get_figure().get_size_inches()
self.assertEqual(int(w), 15)
self.assertEqual(int(h), 8)
@unittest.skipIf(not GRAPHVIZ_INSTALLED, 'graphviz is not installed')
def test_create_tree_digraph(self):
constraints = [-1, 1] * int(self.X_train.shape[1] / 2)
gbm = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True, monotone_constraints=constraints)
gbm.fit(self.X_train, self.y_train, verbose=False)
self.assertRaises(IndexError, lgb.create_tree_digraph, gbm, tree_index=83)
graph = lgb.create_tree_digraph(gbm, tree_index=3,
show_info=['split_gain', 'internal_value', 'internal_weight'],
name='Tree4', node_attr={'color': 'red'})
graph.render(view=False)
self.assertIsInstance(graph, graphviz.Digraph)
self.assertEqual(graph.name, 'Tree4')
self.assertEqual(graph.filename, 'Tree4.gv')
self.assertEqual(len(graph.node_attr), 1)
self.assertEqual(graph.node_attr['color'], 'red')
self.assertEqual(len(graph.graph_attr), 0)
self.assertEqual(len(graph.edge_attr), 0)
graph_body = ''.join(graph.body)
self.assertIn('leaf', graph_body)
self.assertIn('gain', graph_body)
self.assertIn('value', graph_body)
self.assertIn('weight', graph_body)
self.assertIn('#ffdddd', graph_body)
self.assertIn('#ddffdd', graph_body)
self.assertNotIn('data', graph_body)
self.assertNotIn('count', graph_body)
@unittest.skipIf(not MATPLOTLIB_INSTALLED, 'matplotlib is not installed')
def test_plot_metrics(self):
test_data = lgb.Dataset(self.X_test, self.y_test, reference=self.train_data)
self.params.update({"metric": {"binary_logloss", "binary_error"}})
evals_result0 = {}
gbm0 = lgb.train(self.params, self.train_data,
valid_sets=[self.train_data, test_data],
valid_names=['v1', 'v2'],
num_boost_round=10,
evals_result=evals_result0,
verbose_eval=False)
ax0 = lgb.plot_metric(evals_result0)
self.assertIsInstance(ax0, matplotlib.axes.Axes)
self.assertEqual(ax0.get_title(), 'Metric during training')
self.assertEqual(ax0.get_xlabel(), 'Iterations')
self.assertIn(ax0.get_ylabel(), {'binary_logloss', 'binary_error'})
ax0 = lgb.plot_metric(evals_result0, metric='binary_error')
ax0 = lgb.plot_metric(evals_result0, metric='binary_logloss', dataset_names=['v2'])
evals_result1 = {}
gbm1 = lgb.train(self.params, self.train_data,
num_boost_round=10,
evals_result=evals_result1,
verbose_eval=False)
self.assertRaises(ValueError, lgb.plot_metric, evals_result1)
gbm2 = lgb.LGBMClassifier(n_estimators=10, num_leaves=3, silent=True)
gbm2.fit(self.X_train, self.y_train, eval_set=[(self.X_test, self.y_test)], verbose=False)
ax2 = lgb.plot_metric(gbm2, title=None, xlabel=None, ylabel=None)
self.assertIsInstance(ax2, matplotlib.axes.Axes)
self.assertEqual(ax2.get_title(), '')
self.assertEqual(ax2.get_xlabel(), '')
self.assertEqual(ax2.get_ylabel(), '')