-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathtest_dataset.R
623 lines (566 loc) · 18.3 KB
/
test_dataset.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
data(agaricus.train, package = "lightgbm")
train_data <- agaricus.train$data[seq_len(1000L), ]
train_label <- agaricus.train$label[seq_len(1000L)]
data(agaricus.test, package = "lightgbm")
test_data <- agaricus.test$data[1L:100L, ]
test_label <- agaricus.test$label[1L:100L]
test_that("lgb.Dataset: basic construction, saving, loading", {
# from sparse matrix
dtest1 <- lgb.Dataset(
test_data
, label = test_label
, params = list(
verbose = .LGB_VERBOSITY
)
)
# from dense matrix
dtest2 <- lgb.Dataset(as.matrix(test_data), label = test_label)
expect_equal(get_field(dtest1, "label"), get_field(dtest2, "label"))
# save to a local file
tmp_file <- tempfile("lgb.Dataset_")
lgb.Dataset.save(dtest1, tmp_file)
# read from a local file
dtest3 <- lgb.Dataset(
tmp_file
, params = list(
verbose = .LGB_VERBOSITY
)
)
lgb.Dataset.construct(dtest3)
unlink(tmp_file)
expect_equal(get_field(dtest1, "label"), get_field(dtest3, "label"))
})
test_that("lgb.Dataset: get_field & set_field", {
dtest <- lgb.Dataset(test_data)
dtest$construct()
set_field(dtest, "label", test_label)
labels <- get_field(dtest, "label")
expect_equal(test_label, get_field(dtest, "label"))
expect_true(length(get_field(dtest, "weight")) == 0L)
expect_true(length(get_field(dtest, "init_score")) == 0L)
# any other label should error
expect_error(set_field(dtest, "asdf", test_label))
})
test_that("lgb.Dataset: slice, dim", {
dtest <- lgb.Dataset(test_data, label = test_label)
lgb.Dataset.construct(dtest)
expect_equal(dim(dtest), dim(test_data))
dsub1 <- lgb.slice.Dataset(dtest, seq_len(42L))
lgb.Dataset.construct(dsub1)
expect_equal(nrow(dsub1), 42L)
expect_equal(ncol(dsub1), ncol(test_data))
})
test_that("Dataset$set_reference() on a constructed Dataset fails if raw data has been freed", {
dtrain <- lgb.Dataset(train_data, label = train_label)
dtrain$construct()
dtest <- lgb.Dataset(test_data, label = test_label)
dtest$construct()
expect_error({
dtest$set_reference(dtrain)
}, regexp = "cannot set reference after freeing raw data")
})
test_that("Dataset$set_reference() fails if reference is not a Dataset", {
dtrain <- lgb.Dataset(
train_data
, label = train_label
, free_raw_data = FALSE
)
expect_error({
dtrain$set_reference(reference = data.frame(x = rnorm(10L)))
}, regexp = "Can only use lgb.Dataset as a reference")
# passing NULL when the Dataset already has a reference raises an error
dtest <- lgb.Dataset(
test_data
, label = test_label
, free_raw_data = FALSE
)
dtrain$set_reference(dtest)
expect_error({
dtrain$set_reference(reference = NULL)
}, regexp = "Can only use lgb.Dataset as a reference")
})
test_that("Dataset$set_reference() setting reference to the same Dataset has no side effects", {
dtrain <- lgb.Dataset(
train_data
, label = train_label
, free_raw_data = FALSE
, categorical_feature = c(2L, 3L)
)
dtrain$construct()
cat_features_before <- dtrain$.__enclos_env__$private$categorical_feature
colnames_before <- dtrain$get_colnames()
predictor_before <- dtrain$.__enclos_env__$private$predictor
dtrain$set_reference(dtrain)
expect_identical(
cat_features_before
, dtrain$.__enclos_env__$private$categorical_feature
)
expect_identical(
colnames_before
, dtrain$get_colnames()
)
expect_identical(
predictor_before
, dtrain$.__enclos_env__$private$predictor
)
})
test_that("Dataset$set_reference() updates categorical_feature, colnames, and predictor", {
dtrain <- lgb.Dataset(
train_data
, label = train_label
, free_raw_data = FALSE
, categorical_feature = c(2L, 3L)
)
dtrain$construct()
bst <- Booster$new(
train_set = dtrain
, params = list(verbose = -1L, num_threads = .LGB_MAX_THREADS)
)
dtrain$.__enclos_env__$private$predictor <- bst$to_predictor()
test_original_feature_names <- paste0("feature_col_", seq_len(ncol(test_data)))
dtest <- lgb.Dataset(
test_data
, label = test_label
, free_raw_data = FALSE
, colnames = test_original_feature_names
)
dtest$construct()
# at this point, dtest should not have categorical_feature
expect_null(dtest$.__enclos_env__$private$predictor)
expect_null(dtest$.__enclos_env__$private$categorical_feature)
expect_identical(
dtest$get_colnames()
, test_original_feature_names
)
dtest$set_reference(dtrain)
# after setting reference to dtrain, those attributes should have dtrain's values
expect_true(methods::is(
dtest$.__enclos_env__$private$predictor
, "lgb.Predictor"
))
expect_identical(
dtest$.__enclos_env__$private$predictor$.__enclos_env__$private$handle
, dtrain$.__enclos_env__$private$predictor$.__enclos_env__$private$handle
)
expect_identical(
dtest$.__enclos_env__$private$categorical_feature
, dtrain$.__enclos_env__$private$categorical_feature
)
expect_identical(
dtest$get_colnames()
, dtrain$get_colnames()
)
expect_false(
identical(dtest$get_colnames(), test_original_feature_names)
)
})
test_that("lgb.Dataset: colnames", {
dtest <- lgb.Dataset(test_data, label = test_label)
expect_equal(colnames(dtest), colnames(test_data))
lgb.Dataset.construct(dtest)
expect_equal(colnames(dtest), colnames(test_data))
expect_error({
colnames(dtest) <- "asdf"
})
new_names <- make.names(seq_len(ncol(test_data)))
expect_silent({
colnames(dtest) <- new_names
})
expect_equal(colnames(dtest), new_names)
})
test_that("lgb.Dataset: nrow is correct for a very sparse matrix", {
nr <- 1000L
x <- Matrix::rsparsematrix(nr, 100L, density = 0.0005)
# we want it very sparse, so that last rows are empty
expect_lt(max(x@i), nr)
dtest <- lgb.Dataset(x)
expect_equal(dim(dtest), dim(x))
})
test_that("lgb.Dataset: Dataset should be able to construct from matrix and return non-null handle", {
rawData <- matrix(runif(1000L), ncol = 10L)
ref_handle <- NULL
handle <- .Call(
LGBM_DatasetCreateFromMat_R
, rawData
, nrow(rawData)
, ncol(rawData)
, lightgbm:::.params2str(params = list())
, ref_handle
)
expect_true(methods::is(handle, "externalptr"))
expect_false(is.null(handle))
.Call(LGBM_DatasetFree_R, handle)
handle <- NULL
})
test_that("cpp errors should be raised as proper R errors", {
testthat::skip_if(
Sys.getenv("COMPILER", "") == "MSVC"
, message = "Skipping on Visual Studio"
)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(
train$data
, label = train$label
, init_score = seq_len(10L)
)
expect_error({
capture.output({
dtrain$construct()
}, type = "message")
}, regexp = "Initial score size doesn't match data size")
})
test_that("lgb.Dataset$set_field() should convert 'group' to integer", {
ds <- lgb.Dataset(
data = matrix(rnorm(100L), nrow = 50L, ncol = 2L)
, label = sample(c(0L, 1L), size = 50L, replace = TRUE)
)
ds$construct()
current_group <- ds$get_field("group")
expect_null(current_group)
group_as_numeric <- rep(25.0, 2L)
ds$set_field("group", group_as_numeric)
expect_identical(ds$get_field("group"), as.integer(group_as_numeric))
})
test_that("lgb.Dataset should throw an error if 'reference' is provided but of the wrong format", {
data(agaricus.test, package = "lightgbm")
test_data <- agaricus.test$data[1L:100L, ]
test_label <- agaricus.test$label[1L:100L]
# Try to trick lgb.Dataset() into accepting bad input
expect_error({
dtest <- lgb.Dataset(
data = test_data
, label = test_label
, reference = data.frame(x = seq_len(10L), y = seq_len(10L))
)
}, regexp = "reference must be a")
})
test_that("Dataset$new() should throw an error if 'predictor' is provided but of the wrong format", {
data(agaricus.test, package = "lightgbm")
test_data <- agaricus.test$data[1L:100L, ]
test_label <- agaricus.test$label[1L:100L]
expect_error({
dtest <- Dataset$new(
data = test_data
, label = test_label
, predictor = data.frame(x = seq_len(10L), y = seq_len(10L))
)
}, regexp = "predictor must be a", fixed = TRUE)
})
test_that("Dataset$get_params() successfully returns parameters if you passed them", {
# note that this list uses one "main" parameter (feature_pre_filter) and one that
# is an alias (is_sparse), to check that aliases are handled correctly
params <- list(
"feature_pre_filter" = TRUE
, "is_sparse" = FALSE
)
ds <- lgb.Dataset(
test_data
, label = test_label
, params = params
)
returned_params <- ds$get_params()
expect_identical(class(returned_params), "list")
expect_identical(length(params), length(returned_params))
expect_identical(sort(names(params)), sort(names(returned_params)))
for (param_name in names(params)) {
expect_identical(params[[param_name]], returned_params[[param_name]])
}
})
test_that("Dataset$get_params() ignores irrelevant parameters", {
params <- list(
"feature_pre_filter" = TRUE
, "is_sparse" = FALSE
, "nonsense_parameter" = c(1.0, 2.0, 5.0)
)
ds <- lgb.Dataset(
test_data
, label = test_label
, params = params
)
returned_params <- ds$get_params()
expect_false("nonsense_parameter" %in% names(returned_params))
})
test_that("Dataset$update_parameters() does nothing for empty inputs", {
ds <- lgb.Dataset(
test_data
, label = test_label
)
initial_params <- ds$get_params()
expect_identical(initial_params, list())
# update_params() should return "self" so it can be chained
res <- ds$update_params(
params = list()
)
expect_true(.is_Dataset(res))
new_params <- ds$get_params()
expect_identical(new_params, initial_params)
})
test_that("Dataset$update_params() works correctly for recognized Dataset parameters", {
ds <- lgb.Dataset(
test_data
, label = test_label
)
initial_params <- ds$get_params()
expect_identical(initial_params, list())
new_params <- list(
"data_random_seed" = 708L
, "enable_bundle" = FALSE
)
res <- ds$update_params(
params = new_params
)
expect_true(.is_Dataset(res))
updated_params <- ds$get_params()
for (param_name in names(new_params)) {
expect_identical(new_params[[param_name]], updated_params[[param_name]])
}
})
test_that("Dataset$finalize() should not fail on an already-finalized Dataset", {
dtest <- lgb.Dataset(
data = test_data
, label = test_label
)
expect_true(.is_null_handle(dtest$.__enclos_env__$private$handle))
dtest$construct()
expect_false(.is_null_handle(dtest$.__enclos_env__$private$handle))
dtest$finalize()
expect_true(.is_null_handle(dtest$.__enclos_env__$private$handle))
# calling finalize() a second time shouldn't cause any issues
dtest$finalize()
expect_true(.is_null_handle(dtest$.__enclos_env__$private$handle))
})
test_that("lgb.Dataset: should be able to run lgb.train() immediately after using lgb.Dataset() on a file", {
dtest <- lgb.Dataset(
data = test_data
, label = test_label
, params = list(
verbose = .LGB_VERBOSITY
)
)
tmp_file <- tempfile(pattern = "lgb.Dataset_")
lgb.Dataset.save(
dataset = dtest
, fname = tmp_file
)
# read from a local file
dtest_read_in <- lgb.Dataset(data = tmp_file)
param <- list(
objective = "binary"
, metric = "binary_logloss"
, num_leaves = 5L
, learning_rate = 1.0
, verbose = .LGB_VERBOSITY
, num_threads = .LGB_MAX_THREADS
)
# should be able to train right away
bst <- lgb.train(
params = param
, data = dtest_read_in
)
expect_true(.is_Booster(x = bst))
})
test_that("lgb.Dataset: should be able to run lgb.cv() immediately after using lgb.Dataset() on a file", {
dtest <- lgb.Dataset(
data = test_data
, label = test_label
, params = list(
verbosity = .LGB_VERBOSITY
)
)
tmp_file <- tempfile(pattern = "lgb.Dataset_")
lgb.Dataset.save(
dataset = dtest
, fname = tmp_file
)
# read from a local file
dtest_read_in <- lgb.Dataset(data = tmp_file)
param <- list(
objective = "binary"
, metric = "binary_logloss"
, num_leaves = 5L
, learning_rate = 1.0
, num_iterations = 5L
, verbosity = .LGB_VERBOSITY
, num_threads = .LGB_MAX_THREADS
)
# should be able to train right away
bst <- lgb.cv(
params = param
, data = dtest_read_in
)
expect_true(methods::is(bst, "lgb.CVBooster"))
})
test_that("lgb.Dataset: should be able to use and retrieve long feature names", {
# set one feature to a value longer than the default buffer size used
# in LGBM_DatasetGetFeatureNames_R
feature_names <- names(iris)
long_name <- strrep("a", 1000L)
feature_names[1L] <- long_name
names(iris) <- feature_names
# check that feature name survived the trip from R to C++ and back
dtrain <- lgb.Dataset(
data = as.matrix(iris[, -5L])
, label = as.numeric(iris$Species) - 1L
)
dtrain$construct()
col_names <- dtrain$get_colnames()
expect_equal(col_names[1L], long_name)
expect_equal(nchar(col_names[1L]), 1000L)
})
test_that("lgb.Dataset: should be able to create a Dataset from a text file with a header", {
train_file <- tempfile(pattern = "train_", fileext = ".csv")
write.table(
data.frame(y = rnorm(100L), x1 = rnorm(100L), x2 = rnorm(100L))
, file = train_file
, sep = ","
, col.names = TRUE
, row.names = FALSE
, quote = FALSE
)
dtrain <- lgb.Dataset(
data = train_file
, params = list(
header = TRUE
, verbosity = .LGB_VERBOSITY
)
)
dtrain$construct()
expect_identical(dtrain$get_colnames(), c("x1", "x2"))
expect_identical(dtrain$get_params(), list(header = TRUE))
expect_identical(dtrain$dim(), c(100L, 2L))
})
test_that("lgb.Dataset: should be able to create a Dataset from a text file without a header", {
train_file <- tempfile(pattern = "train_", fileext = ".csv")
write.table(
data.frame(y = rnorm(100L), x1 = rnorm(100L), x2 = rnorm(100L))
, file = train_file
, sep = ","
, col.names = FALSE
, row.names = FALSE
, quote = FALSE
)
dtrain <- lgb.Dataset(
data = train_file
, params = list(
header = FALSE
, verbosity = .LGB_VERBOSITY
)
)
dtrain$construct()
expect_identical(dtrain$get_colnames(), c("Column_0", "Column_1"))
expect_identical(dtrain$get_params(), list(header = FALSE))
expect_identical(dtrain$dim(), c(100L, 2L))
})
test_that("Dataset: method calls on a Dataset with a null handle should raise an informative error and not segfault", {
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
dtrain$construct()
dvalid <- dtrain$create_valid(
data = train$data[seq_len(100L), ]
, label = train$label[seq_len(100L)]
)
dvalid$construct()
tmp_file <- tempfile(fileext = ".rds")
saveRDS(dtrain, tmp_file)
rm(dtrain)
dtrain <- readRDS(tmp_file)
expect_error({
dtrain$construct()
}, regexp = "Attempting to create a Dataset without any raw data")
expect_error({
dtrain$dim()
}, regexp = "cannot get dimensions before dataset has been constructed")
expect_error({
dtrain$get_colnames()
}, regexp = "cannot get column names before dataset has been constructed")
expect_error({
dtrain$get_feature_num_bin(1L)
}, regexp = "Cannot get number of bins in feature before constructing Dataset.")
expect_error({
dtrain$save_binary(fname = tempfile(fileext = ".bin"))
}, regexp = "Attempting to create a Dataset without any raw data")
expect_error({
dtrain$set_categorical_feature(categorical_feature = 1L)
}, regexp = "cannot set categorical feature after freeing raw data")
expect_error({
dtrain$set_reference(reference = dvalid)
}, regexp = "cannot set reference after freeing raw data")
tmp_valid_file <- tempfile(fileext = ".rds")
saveRDS(dvalid, tmp_valid_file)
rm(dvalid)
dvalid <- readRDS(tmp_valid_file)
dtrain <- lgb.Dataset(
train$data
, label = train$label
, free_raw_data = FALSE
)
dtrain$construct()
expect_error({
dtrain$set_reference(reference = dvalid)
}, regexp = "cannot get column names before dataset has been constructed")
})
test_that("lgb.Dataset$get_feature_num_bin() works", {
raw_df <- data.frame(
all_random = runif(100L)
, two_vals = rep(c(1.0, 2.0), 50L)
, three_vals = c(rep(c(0.0, 1.0, 2.0), 33L), 0.0)
, two_vals_plus_missing = c(rep(c(1.0, 2.0), 49L), NA_real_, NA_real_)
, all_zero = rep(0.0, 100L)
, categorical = sample.int(2L, 100L, replace = TRUE)
)
n_features <- ncol(raw_df)
raw_mat <- data.matrix(raw_df)
min_data_in_bin <- 2L
ds <- lgb.Dataset(
raw_mat
, params = list(min_data_in_bin = min_data_in_bin)
, categorical_feature = n_features
)
ds$construct()
expected_num_bins <- c(
100L %/% min_data_in_bin + 1L # extra bin for zero
, 3L # 0, 1, 2
, 3L # 0, 1, 2
, 4L # 0, 1, 2 + NA
, 0L # unused
, 3L # 1, 2 + NA
)
actual_num_bins <- sapply(1L:n_features, ds$get_feature_num_bin)
expect_identical(actual_num_bins, expected_num_bins)
# test using defined feature names
bins_by_name <- sapply(colnames(raw_mat), ds$get_feature_num_bin)
expect_identical(unname(bins_by_name), expected_num_bins)
# test using default feature names
no_names_mat <- raw_mat
colnames(no_names_mat) <- NULL
ds_no_names <- lgb.Dataset(
no_names_mat
, params = list(min_data_in_bin = min_data_in_bin)
, categorical_feature = n_features
)
ds_no_names$construct()
default_names <- lapply(
X = seq(1L, ncol(raw_mat))
, FUN = function(i) {
sprintf("Column_%d", i - 1L)
}
)
bins_by_default_name <- sapply(default_names, ds_no_names$get_feature_num_bin)
expect_identical(bins_by_default_name, expected_num_bins)
})
test_that("lgb.Dataset can be constructed with categorical features and without colnames", {
# check that dataset can be constructed
raw_mat <- matrix(rep(c(0L, 1L), 50L), ncol = 1L)
ds <- lgb.Dataset(raw_mat, categorical_feature = 1L)$construct()
sparse_mat <- as(raw_mat, "dgCMatrix")
ds2 <- lgb.Dataset(sparse_mat, categorical_feature = 1L)$construct()
# check that the column names are the default ones
expect_equal(ds$.__enclos_env__$private$colnames, "Column_0")
expect_equal(ds2$.__enclos_env__$private$colnames, "Column_0")
# check for error when index is greater than the number of columns
expect_error({
lgb.Dataset(raw_mat, categorical_feature = 2L)$construct()
}, regexp = "supplied a too large value in categorical_feature: 2 but only 1 features")
})