-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
test_basic.py
285 lines (260 loc) · 12.5 KB
/
test_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# coding: utf-8
import os
import tempfile
import unittest
import lightgbm as lgb
import numpy as np
from scipy import sparse
from sklearn.datasets import load_breast_cancer, dump_svmlight_file, load_svmlight_file
from sklearn.model_selection import train_test_split
class TestBasic(unittest.TestCase):
def test(self):
X_train, X_test, y_train, y_test = train_test_split(*load_breast_cancer(True),
test_size=0.1, random_state=2)
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = train_data.create_valid(X_test, label=y_test)
params = {
"objective": "binary",
"metric": "auc",
"min_data": 10,
"num_leaves": 15,
"verbose": -1,
"num_threads": 1,
"max_bin": 255,
"gpu_use_dp": True
}
bst = lgb.Booster(params, train_data)
bst.add_valid(valid_data, "valid_1")
for i in range(20):
bst.update()
if i % 10 == 0:
print(bst.eval_train(), bst.eval_valid())
self.assertEqual(bst.current_iteration(), 20)
self.assertEqual(bst.num_trees(), 20)
self.assertEqual(bst.num_model_per_iteration(), 1)
self.assertAlmostEqual(bst.lower_bound(), -2.9040190126976606)
self.assertAlmostEqual(bst.upper_bound(), 3.3182142872462883)
bst.save_model("model.txt")
pred_from_matr = bst.predict(X_test)
with tempfile.NamedTemporaryFile() as f:
tname = f.name
with open(tname, "w+b") as f:
dump_svmlight_file(X_test, y_test, f)
pred_from_file = bst.predict(tname)
os.remove(tname)
np.testing.assert_allclose(pred_from_matr, pred_from_file)
# check saved model persistence
bst = lgb.Booster(params, model_file="model.txt")
os.remove("model.txt")
pred_from_model_file = bst.predict(X_test)
# we need to check the consistency of model file here, so test for exact equal
np.testing.assert_array_equal(pred_from_matr, pred_from_model_file)
# check early stopping is working. Make it stop very early, so the scores should be very close to zero
pred_parameter = {"pred_early_stop": True, "pred_early_stop_freq": 5, "pred_early_stop_margin": 1.5}
pred_early_stopping = bst.predict(X_test, **pred_parameter)
# scores likely to be different, but prediction should still be the same
np.testing.assert_array_equal(np.sign(pred_from_matr), np.sign(pred_early_stopping))
# test that shape is checked during prediction
bad_X_test = X_test[:, 1:]
bad_shape_error_msg = "The number of features in data*"
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, bad_X_test)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, sparse.csr_matrix(bad_X_test))
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, sparse.csc_matrix(bad_X_test))
with open(tname, "w+b") as f:
dump_svmlight_file(bad_X_test, y_test, f)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, tname)
with open(tname, "w+b") as f:
dump_svmlight_file(X_test, y_test, f, zero_based=False)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg,
bst.predict, tname)
os.remove(tname)
def test_chunked_dataset(self):
X_train, X_test, y_train, y_test = train_test_split(*load_breast_cancer(True), test_size=0.1, random_state=2)
chunk_size = X_train.shape[0] // 10 + 1
X_train = [X_train[i * chunk_size:(i + 1) * chunk_size, :] for i in range(X_train.shape[0] // chunk_size + 1)]
X_test = [X_test[i * chunk_size:(i + 1) * chunk_size, :] for i in range(X_test.shape[0] // chunk_size + 1)]
train_data = lgb.Dataset(X_train, label=y_train, params={"bin_construct_sample_cnt": 100})
valid_data = train_data.create_valid(X_test, label=y_test, params={"bin_construct_sample_cnt": 100})
train_data.construct()
valid_data.construct()
def test_subset_group(self):
X_train, y_train = load_svmlight_file(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train'))
q_train = np.loadtxt(os.path.join(os.path.dirname(os.path.realpath(__file__)),
'../../examples/lambdarank/rank.train.query'))
lgb_train = lgb.Dataset(X_train, y_train, group=q_train)
self.assertEqual(len(lgb_train.get_group()), 201)
subset = lgb_train.subset(list(range(10))).construct()
subset_group = subset.get_group()
self.assertEqual(len(subset_group), 2)
self.assertEqual(subset_group[0], 1)
self.assertEqual(subset_group[1], 9)
def test_add_features_throws_if_num_data_unequal(self):
X1 = np.random.random((100, 1))
X2 = np.random.random((10, 1))
d1 = lgb.Dataset(X1).construct()
d2 = lgb.Dataset(X2).construct()
with self.assertRaises(lgb.basic.LightGBMError):
d1.add_features_from(d2)
def test_add_features_throws_if_datasets_unconstructed(self):
X1 = np.random.random((100, 1))
X2 = np.random.random((100, 1))
with self.assertRaises(ValueError):
d1 = lgb.Dataset(X1)
d2 = lgb.Dataset(X2)
d1.add_features_from(d2)
with self.assertRaises(ValueError):
d1 = lgb.Dataset(X1).construct()
d2 = lgb.Dataset(X2)
d1.add_features_from(d2)
with self.assertRaises(ValueError):
d1 = lgb.Dataset(X1)
d2 = lgb.Dataset(X2).construct()
d1.add_features_from(d2)
def test_add_features_equal_data_on_alternating_used_unused(self):
self.maxDiff = None
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
names = ['col_%d' % i for i in range(5)]
for j in range(1, 5):
d1 = lgb.Dataset(X[:, :j], feature_name=names[:j]).construct()
d2 = lgb.Dataset(X[:, j:], feature_name=names[j:]).construct()
d1.add_features_from(d2)
with tempfile.NamedTemporaryFile() as f:
d1name = f.name
d1._dump_text(d1name)
d = lgb.Dataset(X, feature_name=names).construct()
with tempfile.NamedTemporaryFile() as f:
dname = f.name
d._dump_text(dname)
with open(d1name, 'rt') as d1f:
d1txt = d1f.read()
with open(dname, 'rt') as df:
dtxt = df.read()
os.remove(dname)
os.remove(d1name)
self.assertEqual(dtxt, d1txt)
def test_add_features_same_booster_behaviour(self):
self.maxDiff = None
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
names = ['col_%d' % i for i in range(5)]
for j in range(1, 5):
d1 = lgb.Dataset(X[:, :j], feature_name=names[:j]).construct()
d2 = lgb.Dataset(X[:, j:], feature_name=names[j:]).construct()
d1.add_features_from(d2)
d = lgb.Dataset(X, feature_name=names).construct()
y = np.random.random(100)
d1.set_label(y)
d.set_label(y)
b1 = lgb.Booster(train_set=d1)
b = lgb.Booster(train_set=d)
for k in range(10):
b.update()
b1.update()
with tempfile.NamedTemporaryFile() as df:
dname = df.name
with tempfile.NamedTemporaryFile() as d1f:
d1name = d1f.name
b1.save_model(d1name)
b.save_model(dname)
with open(dname, 'rt') as df:
dtxt = df.read()
with open(d1name, 'rt') as d1f:
d1txt = d1f.read()
self.assertEqual(dtxt, d1txt)
def test_cegb_affects_behavior(self):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
y = np.random.random(100)
names = ['col_%d' % i for i in range(5)]
ds = lgb.Dataset(X, feature_name=names).construct()
ds.set_label(y)
base = lgb.Booster(train_set=ds)
for k in range(10):
base.update()
with tempfile.NamedTemporaryFile() as f:
basename = f.name
base.save_model(basename)
with open(basename, 'rt') as f:
basetxt = f.read()
# Set extremely harsh penalties, so CEGB will block most splits.
cases = [{'cegb_penalty_feature_coupled': [50, 100, 10, 25, 30]},
{'cegb_penalty_feature_lazy': [1, 2, 3, 4, 5]},
{'cegb_penalty_split': 1}]
for case in cases:
booster = lgb.Booster(train_set=ds, params=case)
for k in range(10):
booster.update()
with tempfile.NamedTemporaryFile() as f:
casename = f.name
booster.save_model(casename)
with open(casename, 'rt') as f:
casetxt = f.read()
self.assertNotEqual(basetxt, casetxt)
def test_cegb_scaling_equalities(self):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
y = np.random.random(100)
names = ['col_%d' % i for i in range(5)]
ds = lgb.Dataset(X, feature_name=names).construct()
ds.set_label(y)
# Compare pairs of penalties, to ensure scaling works as intended
pairs = [({'cegb_penalty_feature_coupled': [1, 2, 1, 2, 1]},
{'cegb_penalty_feature_coupled': [0.5, 1, 0.5, 1, 0.5], 'cegb_tradeoff': 2}),
({'cegb_penalty_feature_lazy': [0.01, 0.02, 0.03, 0.04, 0.05]},
{'cegb_penalty_feature_lazy': [0.005, 0.01, 0.015, 0.02, 0.025], 'cegb_tradeoff': 2}),
({'cegb_penalty_split': 1},
{'cegb_penalty_split': 2, 'cegb_tradeoff': 0.5})]
for (p1, p2) in pairs:
booster1 = lgb.Booster(train_set=ds, params=p1)
booster2 = lgb.Booster(train_set=ds, params=p2)
for k in range(10):
booster1.update()
booster2.update()
with tempfile.NamedTemporaryFile() as f:
p1name = f.name
# Reset booster1's parameters to p2, so the parameter section of the file matches.
booster1.reset_parameter(p2)
booster1.save_model(p1name)
with open(p1name, 'rt') as f:
p1txt = f.read()
with tempfile.NamedTemporaryFile() as f:
p2name = f.name
booster2.save_model(p2name)
with open(p2name, 'rt') as f:
p2txt = f.read()
self.maxDiff = None
self.assertEqual(p1txt, p2txt)
def test_consistent_state_for_dataset_fields(self):
def check_asserts(data):
np.testing.assert_allclose(data.label, data.get_label())
np.testing.assert_allclose(data.label, data.get_field('label'))
self.assertFalse(np.isnan(data.label[0]))
self.assertFalse(np.isinf(data.label[1]))
np.testing.assert_allclose(data.weight, data.get_weight())
np.testing.assert_allclose(data.weight, data.get_field('weight'))
self.assertFalse(np.isnan(data.weight[0]))
self.assertFalse(np.isinf(data.weight[1]))
np.testing.assert_allclose(data.init_score, data.get_init_score())
np.testing.assert_allclose(data.init_score, data.get_field('init_score'))
self.assertFalse(np.isnan(data.init_score[0]))
self.assertFalse(np.isinf(data.init_score[1]))
self.assertTrue(np.all(np.isclose([data.label[0], data.weight[0], data.init_score[0]],
data.label[0])))
self.assertAlmostEqual(data.label[1], data.weight[1])
X, y = load_breast_cancer(True)
sequence = np.ones(y.shape[0])
sequence[0] = np.nan
sequence[1] = np.inf
lgb_data = lgb.Dataset(X, sequence, weight=sequence, init_score=sequence).construct()
check_asserts(lgb_data)
lgb_data = lgb.Dataset(X, y).construct()
lgb_data.set_label(sequence)
lgb_data.set_weight(sequence)
lgb_data.set_init_score(sequence)
check_asserts(lgb_data)