diff --git a/docs/Parameters.md b/docs/Parameters.md index 0ebebca247e2..3ac078cc7359 100644 --- a/docs/Parameters.md +++ b/docs/Parameters.md @@ -21,10 +21,10 @@ The parameter format is ```key1=value1 key2=value2 ... ``` . And parameters can * ```regression_l2```, L2 loss, alias=```mean_squared_error```,```mse``` * ```regression_l1```, L1 loss, alias=```mean_absolute_error```,```mae``` * ```huber```, [Huber loss](https://en.wikipedia.org/wiki/Huber_loss "Huber loss - Wikipedia") - * ```fair```, [Fair loss](https://www.kaggle.com/c/allstate-claims-severity/discussion/24520) + * ```fair```, [Fair loss](http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html) * ```poisson```, [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression "Poisson regression") * ```binary```, binary classification application - * ```lambdarank```, [lambdarank](https://pdfs.semanticscholar.org/fc9a/e09f9ced555558fdf1e997c0a5411fb51f15.pdf) application + * ```lambdarank```, lambdarank application * ```multiclass```, multi-class classification application, should set ```num_class``` as well * ```boosting```, default=```gbdt```, type=enum, options=```gbdt```,```dart```, alias=```boost```,```boosting_type``` * ```gbdt```, traditional Gradient Boosting Decision Tree @@ -178,7 +178,7 @@ The parameter format is ```key1=value1 key2=value2 ... ``` . And parameters can * ```huber_delta```, default=```1.0```, type=double * parameter for [Huber loss](https://en.wikipedia.org/wiki/Huber_loss "Huber loss - Wikipedia"). Will be used in regression task. * ```fair_c```, default=```1.0```, type=double - * parameter for [Fair loss](https://www.kaggle.com/c/allstate-claims-severity/discussion/24520). Will be used in regression task. + * parameter for [Fair loss](http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html). Will be used in regression task. * ```poission_max_delta_step```, default=```0.7```, type=double * parameter used to safeguard optimization * ```scale_pos_weight```, default=```1.0```, type=double @@ -201,12 +201,12 @@ The parameter format is ```key1=value1 key2=value2 ... ``` . And parameters can * ```l1```, absolute loss, alias=```mean_absolute_error```, ```mae``` * ```l2```, square loss, alias=```mean_squared_error```, ```mse``` * ```huber```, [Huber loss](https://en.wikipedia.org/wiki/Huber_loss "Huber loss - Wikipedia") - * ```fair```, [Fair loss](https://www.kaggle.com/c/allstate-claims-severity/discussion/24520) + * ```fair```, [Fair loss](http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html) * ```poisson```, [Poisson regression](https://en.wikipedia.org/wiki/Poisson_regression "Poisson regression") * ```ndcg```, [NDCG](https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG) * ```map```, [MAP](https://www.kaggle.com/wiki/MeanAveragePrecision) - * ```auc```, [AUC](https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve) - * ```binary_logloss```, [log loss](https://www.kaggle.com/wiki/LogLoss) + * ```auc```, [AUC](https://en.wikipedia.org/wiki/Area_under_the_curve_(pharmacokinetics)) + * ```binary_logloss```, [log loss](https://www.kaggle.com/wiki/LogarithmicLoss) * ```binary_error```. For one sample ```0``` for correct classification, ```1``` for error classification. * ```multi_logloss```, log loss for mulit-class classification * ```multi_error```. error rate for mulit-class classification