diff --git a/R-package/R/lgb.Booster.R b/R-package/R/lgb.Booster.R index 7ceb04dedc9c..d64e82fd894e 100644 --- a/R-package/R/lgb.Booster.R +++ b/R-package/R/lgb.Booster.R @@ -718,6 +718,7 @@ Booster <- R6::R6Class( #' number of columns corresponding to the number of trees. #' #' @examples +#' \dontrun{ #' data(agaricus.train, package = "lightgbm") #' train <- agaricus.train #' dtrain <- lgb.Dataset(train$data, label = train$label) @@ -735,6 +736,7 @@ Booster <- R6::R6Class( #' , learning_rate = 1.0 #' ) #' preds <- predict(model, test$data) +#' } #' @export predict.lgb.Booster <- function(object, data, diff --git a/R-package/man/predict.lgb.Booster.Rd b/R-package/man/predict.lgb.Booster.Rd index 40444cbff7be..395c2d45ea37 100644 --- a/R-package/man/predict.lgb.Booster.Rd +++ b/R-package/man/predict.lgb.Booster.Rd @@ -52,6 +52,7 @@ For regression or binary classification, it returns a vector of length \code{nro Predicted values based on class \code{lgb.Booster} } \examples{ +\dontrun{ data(agaricus.train, package = "lightgbm") train <- agaricus.train dtrain <- lgb.Dataset(train$data, label = train$label) @@ -70,3 +71,4 @@ model <- lgb.train( ) preds <- predict(model, test$data) } +} diff --git a/docs/conf.py b/docs/conf.py index 731465fef76a..3dfbf1b8503f 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -247,7 +247,7 @@ def generate_r_docs(app): , install = FALSE \ , devel = FALSE \ , examples = TRUE \ - , run_dont_run = FALSE \ + , run_dont_run = TRUE \ , seed = 42L \ , preview = FALSE \ , new_process = TRUE \