diff --git a/R-package/NAMESPACE b/R-package/NAMESPACE index 33152e33bc1d..bd409a5a638d 100644 --- a/R-package/NAMESPACE +++ b/R-package/NAMESPACE @@ -31,7 +31,6 @@ export(lgb.plot.interpretation) export(lgb.restore_handle) export(lgb.save) export(lgb.train) -export(lgb.unloader) export(lightgbm) export(readRDS.lgb.Booster) export(saveRDS.lgb.Booster) diff --git a/R-package/R/lgb.unloader.R b/R-package/R/lgb.unloader.R deleted file mode 100644 index 443a0d1899e0..000000000000 --- a/R-package/R/lgb.unloader.R +++ /dev/null @@ -1,76 +0,0 @@ -#' @name lgb.unloader -#' @title Remove lightgbm and its objects from an environment -#' @description Attempts to unload LightGBM packages so you can remove objects cleanly without -#' having to restart R. This is useful for instance if an object becomes stuck for no -#' apparent reason and you do not want to restart R to fix the lost object. -#' @param restore Whether to reload \code{LightGBM} immediately after detaching from R. -#' Defaults to \code{TRUE} which means automatically reload \code{LightGBM} once -#' unloading is performed. -#' @param wipe Whether to wipe all \code{lgb.Dataset} and \code{lgb.Booster} from the global -#' environment. Defaults to \code{FALSE} which means to not remove them. -#' @param envir The environment to perform wiping on if \code{wipe == TRUE}. Defaults to -#' \code{.GlobalEnv} which is the global environment. -#' -#' @return NULL invisibly. -#' -#' @examples -#' \donttest{ -#' data(agaricus.train, package = "lightgbm") -#' train <- agaricus.train -#' dtrain <- lgb.Dataset(train$data, label = train$label) -#' data(agaricus.test, package = "lightgbm") -#' test <- agaricus.test -#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label) -#' params <- list( -#' objective = "regression" -#' , metric = "l2" -#' , min_data = 1L -#' , learning_rate = 1.0 -#' ) -#' valids <- list(test = dtest) -#' model <- lgb.train( -#' params = params -#' , data = dtrain -#' , nrounds = 5L -#' , valids = valids -#' ) -#' -#' lgb.unloader(restore = FALSE, wipe = FALSE, envir = .GlobalEnv) -#' rm(model, dtrain, dtest) # Not needed if wipe = TRUE -#' gc() # Not needed if wipe = TRUE -#' -#' library(lightgbm) -#' # Do whatever you want again with LightGBM without object clashing -#' } -#' @export -lgb.unloader <- function(restore = TRUE, wipe = FALSE, envir = .GlobalEnv) { - - # Unload package - try(detach("package:lightgbm", unload = TRUE), silent = TRUE) - - # Should we wipe variables? (lgb.Booster, lgb.Dataset) - if (wipe) { - boosters <- Filter( - f = function(x) { - inherits(get(x, envir = envir), "lgb.Booster") - } - , x = ls(envir = envir) - ) - datasets <- Filter( - f = function(x) { - inherits(get(x, envir = envir), "lgb.Dataset") - } - , x = ls(envir = envir) - ) - rm(list = c(boosters, datasets), envir = envir) - gc(verbose = FALSE) - } - - # Load package back? - if (restore) { - library(lightgbm) - } - - return(invisible(NULL)) - -} diff --git a/R-package/demo/weight_param.R b/R-package/demo/weight_param.R index 9702de41ece9..69202864f69b 100644 --- a/R-package/demo/weight_param.R +++ b/R-package/demo/weight_param.R @@ -72,8 +72,6 @@ small_weight_loss <- as.numeric(model$record_evals$test$l2$eval) plot(small_weight_loss) # It learns! # Run 3: sum of weights equal to 6513 (x 1e5) with adjusted regularization (learning) -# To make it better, we are first cleaning the environment and reloading LightGBM -lgb.unloader(wipe = TRUE) # And now, we are doing as usual library(lightgbm) diff --git a/R-package/man/lgb.unloader.Rd b/R-package/man/lgb.unloader.Rd deleted file mode 100644 index 5a07d3eb1e17..000000000000 --- a/R-package/man/lgb.unloader.Rd +++ /dev/null @@ -1,57 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/lgb.unloader.R -\name{lgb.unloader} -\alias{lgb.unloader} -\title{Remove lightgbm and its objects from an environment} -\usage{ -lgb.unloader(restore = TRUE, wipe = FALSE, envir = .GlobalEnv) -} -\arguments{ -\item{restore}{Whether to reload \code{LightGBM} immediately after detaching from R. -Defaults to \code{TRUE} which means automatically reload \code{LightGBM} once -unloading is performed.} - -\item{wipe}{Whether to wipe all \code{lgb.Dataset} and \code{lgb.Booster} from the global -environment. Defaults to \code{FALSE} which means to not remove them.} - -\item{envir}{The environment to perform wiping on if \code{wipe == TRUE}. Defaults to -\code{.GlobalEnv} which is the global environment.} -} -\value{ -NULL invisibly. -} -\description{ -Attempts to unload LightGBM packages so you can remove objects cleanly without - having to restart R. This is useful for instance if an object becomes stuck for no - apparent reason and you do not want to restart R to fix the lost object. -} -\examples{ -\donttest{ -data(agaricus.train, package = "lightgbm") -train <- agaricus.train -dtrain <- lgb.Dataset(train$data, label = train$label) -data(agaricus.test, package = "lightgbm") -test <- agaricus.test -dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label) -params <- list( - objective = "regression" - , metric = "l2" - , min_data = 1L - , learning_rate = 1.0 -) -valids <- list(test = dtest) -model <- lgb.train( - params = params - , data = dtrain - , nrounds = 5L - , valids = valids -) - -lgb.unloader(restore = FALSE, wipe = FALSE, envir = .GlobalEnv) -rm(model, dtrain, dtest) # Not needed if wipe = TRUE -gc() # Not needed if wipe = TRUE - -library(lightgbm) -# Do whatever you want again with LightGBM without object clashing -} -} diff --git a/R-package/pkgdown/_pkgdown.yml b/R-package/pkgdown/_pkgdown.yml index 9e105d2c6bb5..233a31f0ead9 100644 --- a/R-package/pkgdown/_pkgdown.yml +++ b/R-package/pkgdown/_pkgdown.yml @@ -95,7 +95,3 @@ reference: - '`lgb.interprete`' - '`lgb.plot.importance`' - '`lgb.plot.interpretation`' - - title: Miscellaneous - desc: Ungroupable functions to troubleshoot LightGBM - contents: - - '`lgb.unloader`' diff --git a/R-package/tests/testthat/test_lgb.unloader.R b/R-package/tests/testthat/test_lgb.unloader.R deleted file mode 100644 index 791d825d613c..000000000000 --- a/R-package/tests/testthat/test_lgb.unloader.R +++ /dev/null @@ -1,67 +0,0 @@ -VERBOSITY <- as.integer( - Sys.getenv("LIGHTGBM_TEST_VERBOSITY", "-1") -) - -CALCULATING_TEST_COVERAGE <- Sys.getenv("R_COVR", unset = "unset") != "unset" - -test_that("lgb.unloader works as expected", { - testthat::skip_if( - condition = CALCULATING_TEST_COVERAGE - , message = "lgb.unloader() tests are skipped when calculating test coverage" - ) - data(agaricus.train, package = "lightgbm") - train <- agaricus.train - dtrain <- lgb.Dataset(train$data, label = train$label) - bst <- lgb.train( - params = list( - objective = "regression" - , metric = "l2" - , min_data = 1L - , learning_rate = 1.0 - , verbosity = VERBOSITY - ) - , data = dtrain - , nrounds = 1L - ) - expect_true(exists("bst")) - result <- lgb.unloader(restore = TRUE, wipe = TRUE, envir = environment()) - expect_false(exists("bst")) - expect_null(result) -}) - -test_that("lgb.unloader finds all boosters and removes them", { - testthat::skip_if( - condition = CALCULATING_TEST_COVERAGE - , message = "lgb.unloader() tests are skipped when calculating test coverage" - ) - data(agaricus.train, package = "lightgbm") - train <- agaricus.train - dtrain <- lgb.Dataset(train$data, label = train$label) - bst1 <- lgb.train( - params = list( - objective = "regression" - , metric = "l2" - , min_data = 1L - , learning_rate = 1.0 - , verbosity = VERBOSITY - ) - , data = dtrain - , nrounds = 1L - ) - bst2 <- lgb.train( - params = list( - objective = "regression" - , metric = "l2" - , min_data = 1L - , learning_rate = 1.0 - , verbosity = VERBOSITY - ) - , data = dtrain - , nrounds = 1L - ) - expect_true(exists("bst1")) - expect_true(exists("bst2")) - lgb.unloader(restore = TRUE, wipe = TRUE, envir = environment()) - expect_false(exists("bst1")) - expect_false(exists("bst2")) -}) diff --git a/docs/FAQ.rst b/docs/FAQ.rst index ed051903215c..9f86b882e0a1 100644 --- a/docs/FAQ.rst +++ b/docs/FAQ.rst @@ -247,9 +247,9 @@ R-package 1. Any training command using LightGBM does not work after an error occurred during the training of a previous LightGBM model. ------------------------------------------------------------------------------------------------------------------------------ -Run ``lgb.unloader(wipe = TRUE)`` in the R console, and recreate the LightGBM datasets (this will wipe all LightGBM-related variables). -Due to the pointers, choosing to not wipe variables will not fix the error. -This is a known issue: `Microsoft/LightGBM#698 `__. +In older versions of the R package (prior to ``v3.3.0``), this could happen occasionally and the solution was to run ``lgb.unloader(wipe = TRUE)`` to remove all LightGBM-related objects. Some conversation about this could be found in `Microsoft/LightGBM#698 `__. + +That is no longer necessary as of ``v3.3.0``, and function ``lgb.unloader()`` has since been removed from the R package. 2. I used ``setinfo()``, tried to print my ``lgb.Dataset``, and now the R console froze! ----------------------------------------------------------------------------------------