From c786a25fe2bffb12195f034d6fc2a64f64e78471 Mon Sep 17 00:00:00 2001 From: Brian Kroth Date: Mon, 22 Jan 2024 20:42:33 -0600 Subject: [PATCH] Remove TunableGroups from Storage classes and add TrialData tests (#644) Work split out from #633 - Reorgs the unit test fixtures for reuse by mlos_viz (future PR) - Removes TunablesGroups from Storage classes. Currently unnecessary, belongs in Experiment, and causes inconsistencies with ExperimentData interactions. - Adjusts the initialization code to match. --------- Co-authored-by: Sergiy Matusevych --- mlos_bench/mlos_bench/launcher.py | 39 +++---- mlos_bench/mlos_bench/run.py | 1 + .../mlos_bench/services/config_persistence.py | 61 ++++++++--- mlos_bench/mlos_bench/storage/__init__.py | 2 +- .../storage/base_experiment_data.py | 5 +- mlos_bench/mlos_bench/storage/base_storage.py | 16 +-- .../mlos_bench/storage/base_trial_data.py | 74 +++++++++++-- .../mlos_bench/storage/sql/experiment.py | 2 +- .../mlos_bench/storage/sql/experiment_data.py | 5 +- mlos_bench/mlos_bench/storage/sql/storage.py | 8 +- mlos_bench/mlos_bench/storage/sql/trial.py | 1 - .../mlos_bench/storage/storage_factory.py | 12 +- .../test_load_optimizer_config_examples.py | 7 +- .../test_load_storage_config_examples.py | 5 +- mlos_bench/mlos_bench/tests/conftest.py | 97 ++--------------- .../mlos_bench/tests/environments/__init__.py | 4 +- .../mlos_bench/tests/storage/__init__.py | 7 ++ .../mlos_bench/tests/storage/conftest.py | 47 ++------ .../mlos_bench/tests/storage/exp_data_test.py | 32 +++--- .../mlos_bench/tests/storage/exp_load_test.py | 58 +++++----- .../mlos_bench/tests/storage/fixtures.py | 100 +++++++++++++++++ .../mlos_bench/tests/storage/sql/__init__.py | 7 ++ .../mlos_bench/tests/storage/sql/fixtures.py | 99 +++++++++++++++++ .../tests/storage/trial_config_test.py | 24 ++-- .../tests/storage/trial_data_test.py | 20 +++- .../tests/storage/trial_telemetry_test.py | 14 +-- .../tests/tunable_groups_fixtures.py | 103 ++++++++++++++++++ 27 files changed, 574 insertions(+), 276 deletions(-) create mode 100644 mlos_bench/mlos_bench/tests/storage/__init__.py create mode 100644 mlos_bench/mlos_bench/tests/storage/fixtures.py create mode 100644 mlos_bench/mlos_bench/tests/storage/sql/__init__.py create mode 100644 mlos_bench/mlos_bench/tests/storage/sql/fixtures.py create mode 100644 mlos_bench/mlos_bench/tests/tunable_groups_fixtures.py diff --git a/mlos_bench/mlos_bench/launcher.py b/mlos_bench/mlos_bench/launcher.py index 3f2247146ed..d154d95b736 100644 --- a/mlos_bench/mlos_bench/launcher.py +++ b/mlos_bench/mlos_bench/launcher.py @@ -14,11 +14,11 @@ import logging import sys -from typing import Any, Dict, Iterable, List, Optional, Tuple, Type +from typing import Any, Dict, Iterable, List, Optional, Tuple from mlos_bench.config.schemas import ConfigSchema from mlos_bench.dict_templater import DictTemplater -from mlos_bench.util import BaseTypeVar, try_parse_val +from mlos_bench.util import try_parse_val from mlos_bench.tunables.tunable import TunableValue from mlos_bench.tunables.tunable_groups import TunableGroups @@ -338,7 +338,12 @@ def _load_optimizer(self, args_optimizer: Optional[str]) -> Optimizer: config = {key: val for key, val in self.global_config.items() if key in OneShotOptimizer.BASE_SUPPORTED_CONFIG_PROPS} return OneShotOptimizer( self.tunables, config=config, service=self._parent_service) - optimizer = self._load(Optimizer, args_optimizer, ConfigSchema.OPTIMIZER) # type: ignore[type-abstract] + class_config = self._config_loader.load_config(args_optimizer, ConfigSchema.OPTIMIZER) + assert isinstance(class_config, Dict) + optimizer = self._config_loader.build_optimizer(tunables=self.tunables, + service=self._parent_service, + config=class_config, + global_config=self.global_config) return optimizer def _load_storage(self, args_storage: Optional[str]) -> Storage: @@ -350,31 +355,15 @@ def _load_storage(self, args_storage: Optional[str]) -> Storage: if args_storage is None: # pylint: disable=import-outside-toplevel from mlos_bench.storage.sql.storage import SqlStorage - return SqlStorage(self.tunables, service=self._parent_service, + return SqlStorage(service=self._parent_service, config={ "drivername": "sqlite", "database": ":memory:", "lazy_schema_create": True, }) - storage = self._load(Storage, args_storage, ConfigSchema.STORAGE) # type: ignore[type-abstract] - return storage - - def _load(self, cls: Type[BaseTypeVar], json_file_name: str, schema_type: Optional[ConfigSchema]) -> BaseTypeVar: - """ - Create a new instance of class `cls` from JSON configuration. - - Note: For abstract types, mypy will complain at the call site. - Use "# type: ignore[type-abstract]" to suppress the warning. - See Also: https://github.com/python/mypy/issues/4717 - """ - class_config = self._config_loader.load_config(json_file_name, schema_type) + class_config = self._config_loader.load_config(args_storage, ConfigSchema.STORAGE) assert isinstance(class_config, Dict) - ret = self._config_loader.build_generic( - base_cls=cls, - tunables=self.tunables, - service=self._parent_service, - config=class_config, - global_config=self.global_config - ) - assert isinstance(ret, cls) - return ret + storage = self._config_loader.build_storage(service=self._parent_service, + config=class_config, + global_config=self.global_config) + return storage diff --git a/mlos_bench/mlos_bench/run.py b/mlos_bench/mlos_bench/run.py index 22e6697b342..ee2675df680 100755 --- a/mlos_bench/mlos_bench/run.py +++ b/mlos_bench/mlos_bench/run.py @@ -94,6 +94,7 @@ def _optimize(*, trial_id=trial_id, root_env_config=root_env_config, description=env.name, + tunables=env.tunable_params, opt_target=opt.target, opt_direction=opt.direction, ) as exp: diff --git a/mlos_bench/mlos_bench/services/config_persistence.py b/mlos_bench/mlos_bench/services/config_persistence.py index 7ce4ecc3e0f..6c2dd19f7cf 100644 --- a/mlos_bench/mlos_bench/services/config_persistence.py +++ b/mlos_bench/mlos_bench/services/config_persistence.py @@ -14,24 +14,28 @@ import json # For logging only import logging -from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type, Union +from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, TYPE_CHECKING import json5 # To read configs with comments and other JSON5 syntax features from jsonschema import ValidationError, SchemaError from mlos_bench.config.schemas import ConfigSchema from mlos_bench.environments.base_environment import Environment +from mlos_bench.optimizers.base_optimizer import Optimizer from mlos_bench.services.base_service import Service from mlos_bench.services.types.config_loader_type import SupportsConfigLoading from mlos_bench.tunables.tunable import TunableValue from mlos_bench.tunables.tunable_groups import TunableGroups -from mlos_bench.util import instantiate_from_config, merge_parameters, path_join, preprocess_dynamic_configs, BaseTypeVar +from mlos_bench.util import instantiate_from_config, merge_parameters, path_join, preprocess_dynamic_configs if sys.version_info < (3, 10): from importlib_resources import files else: from importlib.resources import files +if TYPE_CHECKING: + from mlos_bench.storage.base_storage import Storage + _LOG = logging.getLogger(__name__) @@ -228,14 +232,13 @@ def prepare_class_load(self, config: Dict[str, Any], return (class_name, class_config) - def build_generic(self, *, - base_cls: Type[BaseTypeVar], - tunables: TunableGroups, - service: Service, - config: Dict[str, Any], - global_config: Optional[Dict[str, Any]] = None) -> BaseTypeVar: + def build_optimizer(self, *, + tunables: TunableGroups, + service: Service, + config: Dict[str, Any], + global_config: Optional[Dict[str, Any]] = None) -> Optimizer: """ - Generic instantiation of mlos_bench objects like Storage and Optimizer + Instantiation of mlos_bench Optimizer that depend on Service and TunableGroups. A class *MUST* have a constructor that takes four named arguments: @@ -243,8 +246,6 @@ def build_generic(self, *, Parameters ---------- - base_cls : ClassType - A base class of the object to instantiate. tunables : TunableGroups Tunable parameters of the environment. We need them to validate the configurations of merged-in experiments and restored/pending trials. @@ -257,19 +258,49 @@ def build_generic(self, *, Returns ------- - inst : Any - A new instance of the `cls` class. + inst : Optimizer + A new instance of the `Optimizer` class. """ tunables_path = config.get("include_tunables") if tunables_path is not None: tunables = self._load_tunables(tunables_path, tunables) (class_name, class_config) = self.prepare_class_load(config, global_config) - inst = instantiate_from_config(base_cls, class_name, + inst = instantiate_from_config(Optimizer, class_name, # type: ignore[type-abstract] tunables=tunables, config=class_config, global_config=global_config, service=service) - _LOG.info("Created: %s %s", base_cls.__name__, inst) + _LOG.info("Created: Optimizer %s", inst) + return inst + + def build_storage(self, *, + service: Service, + config: Dict[str, Any], + global_config: Optional[Dict[str, Any]] = None) -> "Storage": + """ + Instantiation of mlos_bench Storage objects. + + Parameters + ---------- + service: Service + An optional service object (e.g., providing methods to load config files, etc.) + config : dict + Configuration of the class to instantiate, as loaded from JSON. + global_config : dict + Global configuration parameters (optional). + + Returns + ------- + inst : Storage + A new instance of the Storage class. + """ + (class_name, class_config) = self.prepare_class_load(config, global_config) + from mlos_bench.storage.base_storage import Storage # pylint: disable=import-outside-toplevel + inst = instantiate_from_config(Storage, class_name, # type: ignore[type-abstract] + config=class_config, + global_config=global_config, + service=service) + _LOG.info("Created: Storage %s", inst) return inst def build_environment(self, # pylint: disable=too-many-arguments diff --git a/mlos_bench/mlos_bench/storage/__init__.py b/mlos_bench/mlos_bench/storage/__init__.py index 615bc4a160f..9ae5c80f364 100644 --- a/mlos_bench/mlos_bench/storage/__init__.py +++ b/mlos_bench/mlos_bench/storage/__init__.py @@ -11,5 +11,5 @@ __all__ = [ 'Storage', - 'from_config' + 'from_config', ] diff --git a/mlos_bench/mlos_bench/storage/base_experiment_data.py b/mlos_bench/mlos_bench/storage/base_experiment_data.py index 0f154a03182..62af726a90d 100644 --- a/mlos_bench/mlos_bench/storage/base_experiment_data.py +++ b/mlos_bench/mlos_bench/storage/base_experiment_data.py @@ -95,6 +95,7 @@ def results(self) -> pandas.DataFrame: results : pandas.DataFrame A DataFrame with configurations and results from all trials of the experiment. Has columns [trial_id, config_id, ts_start, ts_end, status] - followed by tunable config parameters and trial results. The latter can be NULLs - if the trial was not successful. + followed by tunable config parameters (prefixed with "config.") and + trial results (prefixed with "result."). The latter can be NULLs if the + trial was not successful. """ diff --git a/mlos_bench/mlos_bench/storage/base_storage.py b/mlos_bench/mlos_bench/storage/base_storage.py index 1afd699f162..ac9a442c741 100644 --- a/mlos_bench/mlos_bench/storage/base_storage.py +++ b/mlos_bench/mlos_bench/storage/base_storage.py @@ -30,7 +30,6 @@ class Storage(metaclass=ABCMeta): """ def __init__(self, - tunables: TunableGroups, config: Dict[str, Any], global_config: Optional[dict] = None, service: Optional[Service] = None): @@ -39,15 +38,11 @@ def __init__(self, Parameters ---------- - tunables : TunableGroups - Tunable parameters of the environment. We need them to validate the - configurations of merged-in experiments and restored/pending trials. config : dict Free-format key/value pairs of configuration parameters. """ _LOG.debug("Storage config: %s", config) self._validate_json_config(config) - self._tunables = tunables.copy() self._service = service self._config = config.copy() self._global_config = global_config or {} @@ -83,6 +78,7 @@ def experiment(self, *, trial_id: int, root_env_config: str, description: str, + tunables: TunableGroups, opt_target: str, opt_direction: Optional[str]) -> 'Storage.Experiment': """ @@ -102,6 +98,7 @@ def experiment(self, *, A path to the root JSON configuration file of the benchmarking environment. description : str Human-readable description of the experiment. + tunables : TunableGroups opt_target : str Name of metric we're optimizing for. opt_direction: Optional[str] @@ -204,6 +201,11 @@ def description(self) -> str: """Get the Experiment's description""" return self._description + @property + def tunables(self) -> TunableGroups: + """Get the Experiment's tunables""" + return self._tunables + @property def opt_target(self) -> str: """Get the Experiment's optimization target""" @@ -271,7 +273,7 @@ def new_trial(self, tunables: TunableGroups, Parameters ---------- tunables : TunableGroups - Tunable parameters of the experiment. + Tunable parameters to use for the trial. config : dict Key/value pairs of additional non-tunable parameters of the trial. @@ -303,7 +305,7 @@ def __init__(self, *, self._config = config or {} def __repr__(self) -> str: - return f"{self._experiment_id}:{self._trial_id}" + return f"{self._experiment_id}:{self._trial_id}:{self._config_id}" @property def trial_id(self) -> int: diff --git a/mlos_bench/mlos_bench/storage/base_trial_data.py b/mlos_bench/mlos_bench/storage/base_trial_data.py index 71ad7e75a42..1ec7548a7d7 100644 --- a/mlos_bench/mlos_bench/storage/base_trial_data.py +++ b/mlos_bench/mlos_bench/storage/base_trial_data.py @@ -7,11 +7,13 @@ """ from abc import ABCMeta, abstractmethod from datetime import datetime -from typing import Optional +from typing import Dict, Optional import pandas from mlos_bench.environments.status import Status +from mlos_bench.tunables.tunable import TunableValue +from mlos_bench.util import try_parse_val class TrialData(metaclass=ABCMeta): @@ -46,38 +48,53 @@ def exp_id(self) -> str: @property def trial_id(self) -> int: """ - ID of the current trial. + ID of the trial. """ return self._trial_id @property def config_id(self) -> int: """ - ID of the configuration of the current trial. + ID of the configuration of the trial. """ return self._config_id @property def ts_start(self) -> datetime: """ - Start timestamp of the current trial (UTC). + Start timestamp of the trial (UTC). """ return self._ts_start @property def ts_end(self) -> Optional[datetime]: """ - End timestamp of the current trial (UTC). + End timestamp of the trial (UTC). """ return self._ts_end @property def status(self) -> Status: """ - Status of the current trial. + Status of the trial. """ return self._status + def _df_to_dict(self, dataframe: pandas.DataFrame) -> Dict[str, Optional[TunableValue]]: + """Utility function to convert certain key-value dataframe formats to a dict.""" + if dataframe.columns.tolist() == ['metric', 'value']: + dataframe = dataframe.copy() + dataframe.rename(columns={'metric': 'parameter'}, inplace=True) + assert dataframe.columns.tolist() == ['parameter', 'value'] + data = {} + for _, row in dataframe.iterrows(): + assert isinstance(row['parameter'], str) + assert row['value'] is None or isinstance(row['value'], (str, int, float)) + if row['parameter'] in data: + raise ValueError(f"Duplicate parameter '{row['parameter']}' in dataframe for trial {self}") + data[row['parameter']] = try_parse_val(row['value']) if isinstance(row['value'], str) else row['value'] + return data + @property @abstractmethod def tunable_config(self) -> pandas.DataFrame: @@ -89,10 +106,23 @@ def tunable_config(self) -> pandas.DataFrame: Returns ------- config : pandas.DataFrame - A dataframe with the tunable configuration of the current trial. + A dataframe with the tunable configuration of the trial. It has two `str` columns, "parameter" and "value". """ + @property + def tunable_config_dict(self) -> Dict[str, Optional[TunableValue]]: + """ + Retrieve the trials' tunable configuration from the storage as a dict. + + Note: this corresponds to the Trial object's "tunables" property. + + Returns + ------- + config : dict + """ + return self._df_to_dict(self.tunable_config) + @property @abstractmethod def results(self) -> pandas.DataFrame: @@ -101,17 +131,28 @@ def results(self) -> pandas.DataFrame: Returns ------- - config : pandas.DataFrame + results : pandas.DataFrame A dataframe with the trial results. It has two `str` columns, "metric" and "value". If the trial status is not SUCCEEDED, the dataframe is empty. """ + @property + def results_dict(self) -> Dict[str, Optional[TunableValue]]: + """ + Retrieve the trials' results from the storage as a dict. + + Returns + ------- + results : dict + """ + return self._df_to_dict(self.results) + @property @abstractmethod def telemetry(self) -> pandas.DataFrame: """ - Retrieve the trials' telemetry from the storage. + Retrieve the trials' telemetry from the storage as a dataframe. Returns ------- @@ -126,7 +167,7 @@ def telemetry(self) -> pandas.DataFrame: @abstractmethod def metadata(self) -> pandas.DataFrame: """ - Retrieve the trials' metadata parameters. + Retrieve the trials' metadata parameters as a dataframe. Note: this corresponds to the Trial object's "config" property. @@ -137,3 +178,16 @@ def metadata(self) -> pandas.DataFrame: It has two `str` columns, "parameter" and "value". Returns an empty dataframe if there is no metadata. """ + + @property + def metadata_dict(self) -> dict: + """ + Retrieve the trials' metadata parameters as a dict. + + Note: this corresponds to the Trial object's "config" property. + + Returns + ------- + metadata : dict + """ + return self._df_to_dict(self.metadata) diff --git a/mlos_bench/mlos_bench/storage/sql/experiment.py b/mlos_bench/mlos_bench/storage/sql/experiment.py index 1bb89e2319e..f8b60e704d4 100644 --- a/mlos_bench/mlos_bench/storage/sql/experiment.py +++ b/mlos_bench/mlos_bench/storage/sql/experiment.py @@ -102,7 +102,7 @@ def _setup(self) -> None: def merge(self, experiment_ids: List[str]) -> None: _LOG.info("Merge: %s <- %s", self._experiment_id, experiment_ids) - raise NotImplementedError() + raise NotImplementedError("TODO") def load_tunable_config(self, config_id: int) -> Dict[str, Any]: with self._engine.connect() as conn: diff --git a/mlos_bench/mlos_bench/storage/sql/experiment_data.py b/mlos_bench/mlos_bench/storage/sql/experiment_data.py index 4aee29cbc14..69bf6a0a96e 100644 --- a/mlos_bench/mlos_bench/storage/sql/experiment_data.py +++ b/mlos_bench/mlos_bench/storage/sql/experiment_data.py @@ -88,6 +88,9 @@ def objectives(self) -> Dict[str, str]: self, opt_target, objectives[opt_target]) return objectives + # TODO: provide a way to get individual data to avoid repeated bulk fetches where only small amounts of data is accessed. + # Or else make the TrialData object lazily populate. + @property def trials(self) -> Dict[int, TrialData]: with self._engine.connect() as conn: @@ -115,9 +118,7 @@ def trials(self) -> Dict[int, TrialData]: @property def results(self) -> pandas.DataFrame: - with self._engine.connect() as conn: - cur_trials = conn.execute( self._schema.trial.select().where( self._schema.trial.c.exp_id == self._exp_id, diff --git a/mlos_bench/mlos_bench/storage/sql/storage.py b/mlos_bench/mlos_bench/storage/sql/storage.py index 9c747f8885c..71e6cda3fdf 100644 --- a/mlos_bench/mlos_bench/storage/sql/storage.py +++ b/mlos_bench/mlos_bench/storage/sql/storage.py @@ -28,11 +28,10 @@ class SqlStorage(Storage): """ def __init__(self, - tunables: TunableGroups, config: dict, global_config: Optional[dict] = None, service: Optional[Service] = None): - super().__init__(tunables, config, global_config, service) + super().__init__(config, global_config, service) lazy_schema_create = self._config.pop("lazy_schema_create", False) self._log_sql = self._config.pop("log_sql", False) self._url = URL.create(**self._config) @@ -62,12 +61,13 @@ def experiment(self, *, trial_id: int, root_env_config: str, description: str, + tunables: TunableGroups, opt_target: str, opt_direction: Optional[str]) -> Storage.Experiment: return Experiment( engine=self._engine, schema=self._schema, - tunables=self._tunables, + tunables=tunables, experiment_id=experiment_id, trial_id=trial_id, root_env_config=root_env_config, @@ -78,6 +78,8 @@ def experiment(self, *, @property def experiments(self) -> Dict[str, ExperimentData]: + # FIXME: this is somewhat expensive if only fetching a single Experiment. + # May need to expand the API or data structures to lazily fetch data and/or cache it. with self._engine.connect() as conn: cur_exp = conn.execute( self._schema.experiment.select().order_by( diff --git a/mlos_bench/mlos_bench/storage/sql/trial.py b/mlos_bench/mlos_bench/storage/sql/trial.py index 4e13ef8e889..0677cf9cb35 100644 --- a/mlos_bench/mlos_bench/storage/sql/trial.py +++ b/mlos_bench/mlos_bench/storage/sql/trial.py @@ -78,7 +78,6 @@ def update(self, status: Status, timestamp: datetime, except Exception: conn.rollback() raise - return metrics def update_telemetry(self, status: Status, metrics: List[Tuple[datetime, str, Any]]) -> None: diff --git a/mlos_bench/mlos_bench/storage/storage_factory.py b/mlos_bench/mlos_bench/storage/storage_factory.py index 04e493a2000..faa934b28f9 100644 --- a/mlos_bench/mlos_bench/storage/storage_factory.py +++ b/mlos_bench/mlos_bench/storage/storage_factory.py @@ -10,13 +10,11 @@ from mlos_bench.config.schemas import ConfigSchema from mlos_bench.services.config_persistence import ConfigPersistenceService -from mlos_bench.tunables.tunable_groups import TunableGroups from mlos_bench.storage.base_storage import Storage def from_config(config_file: str, global_configs: Optional[List[str]] = None, - tunables: Optional[List[str]] = None, **kwargs: Any) -> Storage: """ Create a new storage object from JSON5 config file. @@ -27,8 +25,6 @@ def from_config(config_file: str, JSON5 config file to load. global_configs : Optional[List[str]] An optional list of config files with global parameters. - tunables : Optional[List[str]] - An optional list of files containing JSON5 metadata of the tunables. kwargs : dict Additional configuration parameters. @@ -47,17 +43,13 @@ def from_config(config_file: str, config_loader = ConfigPersistenceService({"config_path": config_path}) global_config.update(kwargs) - # pylint: disable=protected-access - tunable_groups = config_loader._load_tunables(tunables or [], TunableGroups()) class_config = config_loader.load_config(config_file, ConfigSchema.STORAGE) assert isinstance(class_config, Dict) - ret = config_loader.build_generic( - base_cls=Storage, # type: ignore[type-abstract] - tunables=tunable_groups, + ret = config_loader.build_storage( service=config_loader, config=class_config, - global_config=global_config + global_config=global_config, ) assert isinstance(ret, Storage) return ret diff --git a/mlos_bench/mlos_bench/tests/config/optimizers/test_load_optimizer_config_examples.py b/mlos_bench/mlos_bench/tests/config/optimizers/test_load_optimizer_config_examples.py index f649f960bea..bd9099b6081 100644 --- a/mlos_bench/mlos_bench/tests/config/optimizers/test_load_optimizer_config_examples.py +++ b/mlos_bench/mlos_bench/tests/config/optimizers/test_load_optimizer_config_examples.py @@ -45,11 +45,10 @@ def test_load_optimizer_config_examples(config_loader_service: ConfigPersistence assert issubclass(cls, Optimizer) # Make an instance of the class based on the config. tunable_groups = TunableGroups() - storage_inst = config_loader_service.build_generic( - base_cls=Optimizer, # type: ignore[type-abstract] + optimizer_inst = config_loader_service.build_optimizer( tunables=tunable_groups, config=config, service=config_loader_service, ) - assert storage_inst is not None - assert isinstance(storage_inst, cls) + assert optimizer_inst is not None + assert isinstance(optimizer_inst, cls) diff --git a/mlos_bench/mlos_bench/tests/config/storage/test_load_storage_config_examples.py b/mlos_bench/mlos_bench/tests/config/storage/test_load_storage_config_examples.py index 18e714bcf8f..039d49948f2 100644 --- a/mlos_bench/mlos_bench/tests/config/storage/test_load_storage_config_examples.py +++ b/mlos_bench/mlos_bench/tests/config/storage/test_load_storage_config_examples.py @@ -15,7 +15,6 @@ from mlos_bench.config.schemas.config_schemas import ConfigSchema from mlos_bench.services.config_persistence import ConfigPersistenceService from mlos_bench.storage.base_storage import Storage -from mlos_bench.tunables.tunable_groups import TunableGroups from mlos_bench.util import get_class_from_name @@ -46,9 +45,7 @@ def test_load_storage_config_examples(config_loader_service: ConfigPersistenceSe cls = get_class_from_name(config["class"]) assert issubclass(cls, Storage) # Make an instance of the class based on the config. - storage_inst = config_loader_service.build_generic( - base_cls=Storage, # type: ignore[type-abstract] - tunables=TunableGroups(), + storage_inst = config_loader_service.build_storage( config=config, service=config_loader_service, ) diff --git a/mlos_bench/mlos_bench/tests/conftest.py b/mlos_bench/mlos_bench/tests/conftest.py index 9f646ca8f92..c8a73d36149 100644 --- a/mlos_bench/mlos_bench/tests/conftest.py +++ b/mlos_bench/mlos_bench/tests/conftest.py @@ -6,111 +6,28 @@ Common fixtures for mock TunableGroups and Environment objects. """ -from typing import Any, Dict, Generator, List +from typing import Any, Generator, List import os from fasteners import InterProcessLock, InterProcessReaderWriterLock from pytest_docker.plugin import get_docker_services, Services as DockerServices -import json5 as json import pytest -from mlos_bench.tests import SEED - -from mlos_bench.config.schemas import ConfigSchema from mlos_bench.environments.mock_env import MockEnv -from mlos_bench.tunables.covariant_group import CovariantTunableGroup from mlos_bench.tunables.tunable_groups import TunableGroups +from mlos_bench.tests import SEED, tunable_groups_fixtures + # pylint: disable=redefined-outer-name # -- Ignore pylint complaints about pytest references to # `tunable_groups` fixture as both a function and a parameter. - -TUNABLE_GROUPS_JSON = """ -{ - "provision": { - "cost": 1000, - "params": { - "vmSize": { - "description": "Azure VM size", - "type": "categorical", - "default": "Standard_B4ms", - "values": ["Standard_B2s", "Standard_B2ms", "Standard_B4ms"] - } - } - }, - "boot": { - "cost": 300, - "params": { - "idle": { - "description": "Idling method", - "type": "categorical", - "default": "halt", - "values": ["halt", "mwait", "noidle"] - } - } - }, - "kernel": { - "cost": 1, - "params": { - "kernel_sched_migration_cost_ns": { - "description": "Cost of migrating the thread to another core", - "type": "int", - "default": -1, - "range": [0, 500000], - "special": [-1, 0] - }, - "kernel_sched_latency_ns": { - "description": "Initial value for the scheduler period", - "type": "int", - "default": 2000000, - "range": [0, 1000000000] - } - } - } -} -""" - - -@pytest.fixture -def tunable_groups_config() -> Dict[str, Any]: - """ - Fixture to get the JSON string for the tunable groups. - """ - conf = json.loads(TUNABLE_GROUPS_JSON) - assert isinstance(conf, dict) - ConfigSchema.TUNABLE_PARAMS.validate(conf) - return conf - - -@pytest.fixture -def tunable_groups(tunable_groups_config: dict) -> TunableGroups: - """ - A test fixture that produces a mock TunableGroups. - - Returns - ------- - tunable_groups : TunableGroups - A new TunableGroups object for testing. - """ - tunables = TunableGroups(tunable_groups_config) - tunables.reset() - return tunables - - -@pytest.fixture -def covariant_group(tunable_groups: TunableGroups) -> CovariantTunableGroup: - """ - Text fixture to get a CovariantTunableGroup from tunable_groups. - - Returns - ------- - CovariantTunableGroup - """ - (_, covariant_group) = next(iter(tunable_groups)) - return covariant_group +# Expose some of those as local names so they can be picked up as fixtures by pytest. +tunable_groups_config = tunable_groups_fixtures.tunable_groups_config +tunable_groups = tunable_groups_fixtures.tunable_groups +covariant_group = tunable_groups_fixtures.covariant_group @pytest.fixture diff --git a/mlos_bench/mlos_bench/tests/environments/__init__.py b/mlos_bench/mlos_bench/tests/environments/__init__.py index 9fc0c1f9a82..5e71d49b762 100644 --- a/mlos_bench/mlos_bench/tests/environments/__init__.py +++ b/mlos_bench/mlos_bench/tests/environments/__init__.py @@ -7,7 +7,7 @@ """ from datetime import datetime -from typing import Any, Dict, List, Optional, Tuple, Union +from typing import Any, Dict, List, Optional, Tuple import pytest @@ -19,7 +19,7 @@ def check_env_success(env: Environment, tunable_groups: TunableGroups, - expected_results: Dict[str, Union[TunableValue]], + expected_results: Dict[str, TunableValue], expected_telemetry: List[Tuple[datetime, str, Any]], global_config: Optional[dict] = None) -> None: """ diff --git a/mlos_bench/mlos_bench/tests/storage/__init__.py b/mlos_bench/mlos_bench/tests/storage/__init__.py new file mode 100644 index 00000000000..edd7d86133d --- /dev/null +++ b/mlos_bench/mlos_bench/tests/storage/__init__.py @@ -0,0 +1,7 @@ +# +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. +# +""" +Tests for mlos_bench storage. +""" diff --git a/mlos_bench/mlos_bench/tests/storage/conftest.py b/mlos_bench/mlos_bench/tests/storage/conftest.py index 613730cbed7..494690b675d 100644 --- a/mlos_bench/mlos_bench/tests/storage/conftest.py +++ b/mlos_bench/mlos_bench/tests/storage/conftest.py @@ -3,44 +3,17 @@ # Licensed under the MIT License. # """ -Test fixtures for mlos_bench storage. +Export test fixtures for mlos_bench storage. """ -import pytest +import mlos_bench.tests.storage.sql.fixtures as sql_storage_fixtures -from mlos_bench.tunables.tunable_groups import TunableGroups -from mlos_bench.storage.base_storage import Storage -from mlos_bench.storage.sql.storage import SqlStorage +# NOTE: For future storage implementation additions, we can refactor this to use +# lazy_fixture and parameterize the tests across fixtures but keep the test code the +# same. -# pylint: disable=redefined-outer-name - - -@pytest.fixture -def storage_memory_sql(tunable_groups: TunableGroups) -> SqlStorage: - """ - Test fixture for in-memory SQLite3 storage. - """ - return SqlStorage( - tunables=tunable_groups, - service=None, - config={ - "drivername": "sqlite", - "database": ":memory:", - } - ) - - -@pytest.fixture -def exp_storage_memory_sql(storage_memory_sql: Storage) -> SqlStorage.Experiment: - """ - Test fixture for Experiment using in-memory SQLite3 storage. - """ - # pylint: disable=unnecessary-dunder-call - return storage_memory_sql.experiment( - experiment_id="Test-001", - trial_id=1, - root_env_config="environment.jsonc", - description="pytest experiment", - opt_target="score", - opt_direction="min", - ).__enter__() +# Expose some of those as local names so they can be picked up as fixtures by pytest. +storage = sql_storage_fixtures.storage +exp_storage = sql_storage_fixtures.exp_storage +exp_storage_with_trials = sql_storage_fixtures.exp_storage_with_trials +exp_data = sql_storage_fixtures.exp_data diff --git a/mlos_bench/mlos_bench/tests/storage/exp_data_test.py b/mlos_bench/mlos_bench/tests/storage/exp_data_test.py index fc459172b86..35d0d7177ce 100644 --- a/mlos_bench/mlos_bench/tests/storage/exp_data_test.py +++ b/mlos_bench/mlos_bench/tests/storage/exp_data_test.py @@ -10,49 +10,55 @@ from mlos_bench.tunables.tunable_groups import TunableGroups -def test_load_empty_exp_data(storage_memory_sql: Storage, exp_storage_memory_sql: Storage.Experiment) -> None: +def test_load_empty_exp_data(storage: Storage, exp_storage: Storage.Experiment) -> None: """ Try to retrieve old experimental data from the empty storage. """ - exp = storage_memory_sql.experiments[exp_storage_memory_sql.experiment_id] - assert exp.exp_id == exp_storage_memory_sql.experiment_id - assert exp.description == exp_storage_memory_sql.description + exp = storage.experiments[exp_storage.experiment_id] + assert exp.exp_id == exp_storage.experiment_id + assert exp.description == exp_storage.description # Only support single objective for now. - assert exp.objectives == {exp_storage_memory_sql.opt_target: exp_storage_memory_sql.opt_direction} + assert exp.objectives == {exp_storage.opt_target: exp_storage.opt_direction} -def test_exp_trial_data_objectives(storage_memory_sql: Storage, - exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_data_objectives(storage: Storage, + exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start a new trial and check the storage for the trial data. """ - trial_opt_new = exp_storage_memory_sql.new_trial(tunable_groups, config={ + trial_opt_new = exp_storage.new_trial(tunable_groups, config={ "opt_target": "some-other-target", "opt_direction": "max", }) assert trial_opt_new.config() == { - "experiment_id": exp_storage_memory_sql.experiment_id, + "experiment_id": exp_storage.experiment_id, "trial_id": trial_opt_new.trial_id, "opt_target": "some-other-target", "opt_direction": "max", } - trial_opt_old = exp_storage_memory_sql.new_trial(tunable_groups, config={ + trial_opt_old = exp_storage.new_trial(tunable_groups, config={ "opt_target": "back-compat", # "opt_direction": "max", # missing }) assert trial_opt_old.config() == { - "experiment_id": exp_storage_memory_sql.experiment_id, + "experiment_id": exp_storage.experiment_id, "trial_id": trial_opt_old.trial_id, "opt_target": "back-compat", } - exp = storage_memory_sql.experiments[exp_storage_memory_sql.experiment_id] + exp = storage.experiments[exp_storage.experiment_id] # objectives should be the combination of both the trial objectives and the experiment objectives assert exp.objectives == { "back-compat": None, "some-other-target": "max", - exp_storage_memory_sql.opt_target: exp_storage_memory_sql.opt_direction, + exp_storage.opt_target: exp_storage.opt_direction, + } + + trial_data_opt_new = exp.trials[trial_opt_new.trial_id] + assert trial_data_opt_new.metadata_dict == { + "opt_target": "some-other-target", + "opt_direction": "max", } diff --git a/mlos_bench/mlos_bench/tests/storage/exp_load_test.py b/mlos_bench/mlos_bench/tests/storage/exp_load_test.py index 704715bd6bd..3763a3f1181 100644 --- a/mlos_bench/mlos_bench/tests/storage/exp_load_test.py +++ b/mlos_bench/mlos_bench/tests/storage/exp_load_test.py @@ -14,36 +14,36 @@ from mlos_bench.storage.base_storage import Storage -def test_exp_load_empty(exp_storage_memory_sql: Storage.Experiment) -> None: +def test_exp_load_empty(exp_storage: Storage.Experiment) -> None: """ Try to retrieve old experimental data from the empty storage. """ - (configs, scores, status) = exp_storage_memory_sql.load() + (configs, scores, status) = exp_storage.load() assert not configs assert not scores assert not status -def test_exp_pending_empty(exp_storage_memory_sql: Storage.Experiment) -> None: +def test_exp_pending_empty(exp_storage: Storage.Experiment) -> None: """ Try to retrieve pending experiments from the empty storage. """ - trials = list(exp_storage_memory_sql.pending_trials()) + trials = list(exp_storage.pending_trials()) assert not trials -def test_exp_trial_pending(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_pending(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start a trial and check that it is pending. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) - (pending,) = list(exp_storage_memory_sql.pending_trials()) + trial = exp_storage.new_trial(tunable_groups) + (pending,) = list(exp_storage.pending_trials()) assert pending.trial_id == trial.trial_id assert pending.tunables == tunable_groups -def test_exp_trial_pending_many(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_pending_many(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start THREE trials and check that both are pending. @@ -51,45 +51,45 @@ def test_exp_trial_pending_many(exp_storage_memory_sql: Storage.Experiment, config1 = tunable_groups.copy().assign({'idle': 'mwait'}) config2 = tunable_groups.copy().assign({'idle': 'noidle'}) trial_ids = { - exp_storage_memory_sql.new_trial(config1).trial_id, - exp_storage_memory_sql.new_trial(config2).trial_id, - exp_storage_memory_sql.new_trial(config2).trial_id, # Submit same config twice + exp_storage.new_trial(config1).trial_id, + exp_storage.new_trial(config2).trial_id, + exp_storage.new_trial(config2).trial_id, # Submit same config twice } - pending_ids = {pending.trial_id for pending in exp_storage_memory_sql.pending_trials()} + pending_ids = {pending.trial_id for pending in exp_storage.pending_trials()} assert len(pending_ids) == 3 assert trial_ids == pending_ids -def test_exp_trial_pending_fail(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_pending_fail(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start a trial, fail it, and and check that it is NOT pending. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) + trial = exp_storage.new_trial(tunable_groups) trial.update(Status.FAILED, datetime.utcnow()) - trials = list(exp_storage_memory_sql.pending_trials()) + trials = list(exp_storage.pending_trials()) assert not trials -def test_exp_trial_success(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_success(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start a trial, finish it successfully, and and check that it is NOT pending. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) + trial = exp_storage.new_trial(tunable_groups) trial.update(Status.SUCCEEDED, datetime.utcnow(), 99.9) - trials = list(exp_storage_memory_sql.pending_trials()) + trials = list(exp_storage.pending_trials()) assert not trials -def test_exp_trial_update_categ(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_update_categ(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Update the trial with multiple metrics, some of which are categorical. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) + trial = exp_storage.new_trial(tunable_groups) trial.update(Status.SUCCEEDED, datetime.utcnow(), {"score": 99.9, "benchmark": "test"}) - assert exp_storage_memory_sql.load() == ( + assert exp_storage.load() == ( [{ 'idle': 'halt', 'kernel_sched_latency_ns': '2000000', @@ -101,18 +101,18 @@ def test_exp_trial_update_categ(exp_storage_memory_sql: Storage.Experiment, ) -def test_exp_trial_update_twice(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_update_twice(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Update the trial status twice and receive an error. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) + trial = exp_storage.new_trial(tunable_groups) trial.update(Status.FAILED, datetime.utcnow()) with pytest.raises(RuntimeError): trial.update(Status.SUCCEEDED, datetime.utcnow(), 99.9) -def test_exp_trial_pending_3(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_pending_3(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start THREE trials, let one succeed, another one fail and keep one not updated. @@ -120,17 +120,17 @@ def test_exp_trial_pending_3(exp_storage_memory_sql: Storage.Experiment, """ score = 99.9 - trial_fail = exp_storage_memory_sql.new_trial(tunable_groups) - trial_succ = exp_storage_memory_sql.new_trial(tunable_groups) - trial_pend = exp_storage_memory_sql.new_trial(tunable_groups) + trial_fail = exp_storage.new_trial(tunable_groups) + trial_succ = exp_storage.new_trial(tunable_groups) + trial_pend = exp_storage.new_trial(tunable_groups) trial_fail.update(Status.FAILED, datetime.utcnow()) trial_succ.update(Status.SUCCEEDED, datetime.utcnow(), score) - (pending,) = list(exp_storage_memory_sql.pending_trials()) + (pending,) = list(exp_storage.pending_trials()) assert pending.trial_id == trial_pend.trial_id - (configs, scores, status) = exp_storage_memory_sql.load() + (configs, scores, status) = exp_storage.load() assert len(configs) == 2 assert scores == [None, score] assert status == [Status.FAILED, Status.SUCCEEDED] diff --git a/mlos_bench/mlos_bench/tests/storage/fixtures.py b/mlos_bench/mlos_bench/tests/storage/fixtures.py new file mode 100644 index 00000000000..bfa4c5d7b13 --- /dev/null +++ b/mlos_bench/mlos_bench/tests/storage/fixtures.py @@ -0,0 +1,100 @@ +# +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. +# +""" +Test fixtures for mlos_bench storage. +""" + +from datetime import datetime +from random import random, seed as rand_seed + +import pytest + +from mlos_bench.environments.status import Status +from mlos_bench.storage.base_storage import Storage +from mlos_bench.storage.base_experiment_data import ExperimentData +from mlos_bench.storage.sql.storage import SqlStorage +from mlos_bench.optimizers.mock_optimizer import MockOptimizer +from mlos_bench.tunables.tunable_groups import TunableGroups + +# pylint: disable=redefined-outer-name + + +@pytest.fixture +def storage_memory_sql() -> SqlStorage: + """ + Test fixture for in-memory SQLite3 storage. + """ + return SqlStorage( + service=None, + config={ + "drivername": "sqlite", + "database": ":memory:", + } + ) + + +@pytest.fixture +def exp_storage_memory_sql(storage_memory_sql: Storage, tunable_groups: TunableGroups) -> SqlStorage.Experiment: + """ + Test fixture for Experiment using in-memory SQLite3 storage. + Note: It has already entered the context upon return. + """ + opt_target = "score" + opt_direction = "min" + with storage_memory_sql.experiment( + experiment_id="Test-001", + trial_id=1, + root_env_config="environment.jsonc", + description="pytest experiment", + tunables=tunable_groups, + opt_target=opt_target, + opt_direction=opt_direction, + ) as exp: + return exp + + +@pytest.fixture +def exp_storage_memory_sql_with_trials(exp_storage_memory_sql: Storage.Experiment) -> SqlStorage.Experiment: + """ + Test fixture for Experiment using in-memory SQLite3 storage. + """ + # Add some trials to that experiment. + # Note: we're just fabricating some made up function for the ML libraries to try and learn. + base_score = 5.0 + tunable_name = "kernel_sched_latency_ns" + tunable_default = exp_storage_memory_sql.tunables.get_tunable(tunable_name)[0].default + assert isinstance(tunable_default, int) + config_count = 10 + repeat_count = 3 + seed = 42 + rand_seed(seed) + opt = MockOptimizer(tunables=exp_storage_memory_sql.tunables, config={"seed": seed}) + assert opt.start_with_defaults + for config_i in range(config_count): + tunables = opt.suggest() + for repeat_j in range(repeat_count): + trial = exp_storage_memory_sql.new_trial(tunables=tunables.copy(), config={ + "opt_target": exp_storage_memory_sql.opt_target, + "opt_direction": exp_storage_memory_sql.opt_direction, + "trial_number": config_i * repeat_count + repeat_j + 1, + }) + trial.update_telemetry(status=Status.RUNNING, metrics=[ + (datetime.utcnow(), "some-metric", base_score + random() / 10), + ]) + tunable_value = float(tunables.get_tunable(tunable_name)[0].numerical_value) + trial.update(Status.SUCCEEDED, datetime.utcnow(), metrics={ + # Give some variance on the score. + # And some influence from the tunable value. + "score": base_score + 10 * ((tunable_value / tunable_default) - 1) + random() / 10, + }) + return exp_storage_memory_sql + + +@pytest.fixture +def exp_data(storage_memory_sql: Storage, exp_storage_memory_sql_with_trials: Storage.Experiment) -> ExperimentData: + """ + Test fixture for ExperimentData. + """ + return storage_memory_sql.experiments[exp_storage_memory_sql_with_trials.experiment_id] diff --git a/mlos_bench/mlos_bench/tests/storage/sql/__init__.py b/mlos_bench/mlos_bench/tests/storage/sql/__init__.py new file mode 100644 index 00000000000..f3da42c6fec --- /dev/null +++ b/mlos_bench/mlos_bench/tests/storage/sql/__init__.py @@ -0,0 +1,7 @@ +# +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. +# +""" +Test for mlos_bench sql storage. +""" diff --git a/mlos_bench/mlos_bench/tests/storage/sql/fixtures.py b/mlos_bench/mlos_bench/tests/storage/sql/fixtures.py new file mode 100644 index 00000000000..03be3d3d5f8 --- /dev/null +++ b/mlos_bench/mlos_bench/tests/storage/sql/fixtures.py @@ -0,0 +1,99 @@ +# +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. +# +""" +Test fixtures for mlos_bench storage. +""" + +from datetime import datetime +from random import random, seed as rand_seed + +import pytest + +from mlos_bench.environments.status import Status +from mlos_bench.storage.base_experiment_data import ExperimentData +from mlos_bench.storage.sql.storage import SqlStorage +from mlos_bench.optimizers.mock_optimizer import MockOptimizer +from mlos_bench.tunables.tunable_groups import TunableGroups + +# pylint: disable=redefined-outer-name + + +@pytest.fixture +def storage() -> SqlStorage: + """ + Test fixture for in-memory SQLite3 storage. + """ + return SqlStorage( + service=None, + config={ + "drivername": "sqlite", + "database": ":memory:", + } + ) + + +@pytest.fixture +def exp_storage(storage: SqlStorage, tunable_groups: TunableGroups) -> SqlStorage.Experiment: + """ + Test fixture for Experiment using in-memory SQLite3 storage. + Note: It has already entered the context upon return. + """ + opt_target = "score" + opt_direction = "min" + with storage.experiment( + experiment_id="Test-001", + trial_id=1, + root_env_config="environment.jsonc", + description="pytest experiment", + tunables=tunable_groups, + opt_target=opt_target, + opt_direction=opt_direction, + ) as exp: + return exp + + +@pytest.fixture +def exp_storage_with_trials(exp_storage: SqlStorage.Experiment) -> SqlStorage.Experiment: + """ + Test fixture for Experiment using in-memory SQLite3 storage. + """ + # Add some trials to that experiment. + # Note: we're just fabricating some made up function for the ML libraries to try and learn. + base_score = 5.0 + tunable_name = "kernel_sched_latency_ns" + tunable_default = exp_storage.tunables.get_tunable(tunable_name)[0].default + assert isinstance(tunable_default, int) + config_count = 10 + repeat_count = 3 + seed = 42 + rand_seed(seed) + opt = MockOptimizer(tunables=exp_storage.tunables, config={"seed": seed}) + assert opt.start_with_defaults + for config_i in range(config_count): + tunables = opt.suggest() + for repeat_j in range(repeat_count): + trial = exp_storage.new_trial(tunables=tunables.copy(), config={ + "opt_target": exp_storage.opt_target, + "opt_direction": exp_storage.opt_direction, + "trial_number": config_i * repeat_count + repeat_j + 1, + }) + trial.update_telemetry(status=Status.RUNNING, metrics=[ + (datetime.utcnow(), "some-metric", base_score + random() / 10), + ]) + tunable_value = float(tunables.get_tunable(tunable_name)[0].numerical_value) + trial.update(Status.SUCCEEDED, datetime.utcnow(), metrics={ + # Give some variance on the score. + # And some influence from the tunable value. + "score": base_score + 10 * ((tunable_value / tunable_default) - 1) + random() / 10, + }) + return exp_storage + + +@pytest.fixture +def exp_data(storage: SqlStorage, exp_storage_with_trials: SqlStorage.Experiment) -> ExperimentData: + """ + Test fixture for ExperimentData. + """ + return storage.experiments[exp_storage_with_trials.experiment_id] diff --git a/mlos_bench/mlos_bench/tests/storage/trial_config_test.py b/mlos_bench/mlos_bench/tests/storage/trial_config_test.py index cfdecbb67b0..7b07f6993ce 100644 --- a/mlos_bench/mlos_bench/tests/storage/trial_config_test.py +++ b/mlos_bench/mlos_bench/tests/storage/trial_config_test.py @@ -10,25 +10,25 @@ from mlos_bench.tunables.tunable_groups import TunableGroups -def test_exp_trial_pending(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_pending(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Schedule a trial and check that it is pending and has the right configuration. """ config = {"location": "westus2", "num_repeats": 100} - trial = exp_storage_memory_sql.new_trial(tunable_groups, config) - (pending,) = list(exp_storage_memory_sql.pending_trials()) + trial = exp_storage.new_trial(tunable_groups, config) + (pending,) = list(exp_storage.pending_trials()) assert pending.trial_id == trial.trial_id assert pending.tunables == tunable_groups assert pending.config() == { "location": "westus2", "num_repeats": "100", "experiment_id": "Test-001", - "trial_id": 1, + "trial_id": trial.trial_id, } -def test_exp_trial_configs(exp_storage_memory_sql: Storage.Experiment, +def test_exp_trial_configs(exp_storage: Storage.Experiment, tunable_groups: TunableGroups) -> None: """ Start multiple trials with two different configs and check that @@ -36,18 +36,18 @@ def test_exp_trial_configs(exp_storage_memory_sql: Storage.Experiment, """ config1 = tunable_groups.copy().assign({'idle': 'mwait'}) trials1 = [ - exp_storage_memory_sql.new_trial(config1), - exp_storage_memory_sql.new_trial(config1), - exp_storage_memory_sql.new_trial(config1.copy()), # Same values, different instance + exp_storage.new_trial(config1), + exp_storage.new_trial(config1), + exp_storage.new_trial(config1.copy()), # Same values, different instance ] assert trials1[0].config_id == trials1[1].config_id assert trials1[0].config_id == trials1[2].config_id config2 = tunable_groups.copy().assign({'idle': 'halt'}) trials2 = [ - exp_storage_memory_sql.new_trial(config2), - exp_storage_memory_sql.new_trial(config2), - exp_storage_memory_sql.new_trial(config2.copy()), # Same values, different instance + exp_storage.new_trial(config2), + exp_storage.new_trial(config2), + exp_storage.new_trial(config2.copy()), # Same values, different instance ] assert trials2[0].config_id == trials2[1].config_id assert trials2[0].config_id == trials2[2].config_id @@ -55,7 +55,7 @@ def test_exp_trial_configs(exp_storage_memory_sql: Storage.Experiment, assert trials1[0].config_id != trials2[0].config_id pending_ids = [ - pending.config_id for pending in exp_storage_memory_sql.pending_trials() + pending.config_id for pending in exp_storage.pending_trials() ] assert len(pending_ids) == 6 assert len(set(pending_ids)) == 2 diff --git a/mlos_bench/mlos_bench/tests/storage/trial_data_test.py b/mlos_bench/mlos_bench/tests/storage/trial_data_test.py index 7775e732496..e6ae0b18d82 100644 --- a/mlos_bench/mlos_bench/tests/storage/trial_data_test.py +++ b/mlos_bench/mlos_bench/tests/storage/trial_data_test.py @@ -6,4 +6,22 @@ Unit tests for loading the trial metadata. """ -# TODO +import pytest + +from mlos_bench.environments.status import Status +from mlos_bench.storage.base_experiment_data import ExperimentData +from mlos_bench.tunables.tunable_groups import TunableGroups + + +def test_exp_trial_data(exp_data: ExperimentData, + tunable_groups: TunableGroups) -> None: + """ + Start a new trial and check the storage for the trial data. + """ + trial = exp_data.trials[1] + assert trial.status == Status.SUCCEEDED + assert trial.tunable_config_dict == tunable_groups.get_param_values() + assert trial.metadata_dict["trial_number"] == 1 + assert list(trial.results_dict.keys()) == ["score"] + assert trial.results_dict["score"] == pytest.approx(5.0, rel=0.1) + # TODO: test telemetry data too diff --git a/mlos_bench/mlos_bench/tests/storage/trial_telemetry_test.py b/mlos_bench/mlos_bench/tests/storage/trial_telemetry_test.py index ecb29029032..3da137ac934 100644 --- a/mlos_bench/mlos_bench/tests/storage/trial_telemetry_test.py +++ b/mlos_bench/mlos_bench/tests/storage/trial_telemetry_test.py @@ -47,27 +47,27 @@ def _telemetry_str(data: List[Tuple[datetime, str, Any]] return [(ts, key, None if val is None else str(val)) for (ts, key, val) in data] -def test_update_telemetry(exp_storage_memory_sql: Storage.Experiment, +def test_update_telemetry(exp_storage: Storage.Experiment, tunable_groups: TunableGroups, telemetry_data: List[Tuple[datetime, str, Any]]) -> None: """ Make sure update_telemetry() and load_telemetry() methods work. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) - assert exp_storage_memory_sql.load_telemetry(trial.trial_id) == [] + trial = exp_storage.new_trial(tunable_groups) + assert exp_storage.load_telemetry(trial.trial_id) == [] trial.update_telemetry(Status.RUNNING, telemetry_data) - assert exp_storage_memory_sql.load_telemetry(trial.trial_id) == _telemetry_str(telemetry_data) + assert exp_storage.load_telemetry(trial.trial_id) == _telemetry_str(telemetry_data) -def test_update_telemetry_twice(exp_storage_memory_sql: Storage.Experiment, +def test_update_telemetry_twice(exp_storage: Storage.Experiment, tunable_groups: TunableGroups, telemetry_data: List[Tuple[datetime, str, Any]]) -> None: """ Make sure update_telemetry() call is idempotent. """ - trial = exp_storage_memory_sql.new_trial(tunable_groups) + trial = exp_storage.new_trial(tunable_groups) trial.update_telemetry(Status.RUNNING, telemetry_data) trial.update_telemetry(Status.RUNNING, telemetry_data) trial.update_telemetry(Status.RUNNING, telemetry_data) - assert exp_storage_memory_sql.load_telemetry(trial.trial_id) == _telemetry_str(telemetry_data) + assert exp_storage.load_telemetry(trial.trial_id) == _telemetry_str(telemetry_data) diff --git a/mlos_bench/mlos_bench/tests/tunable_groups_fixtures.py b/mlos_bench/mlos_bench/tests/tunable_groups_fixtures.py new file mode 100644 index 00000000000..2afed8ef17b --- /dev/null +++ b/mlos_bench/mlos_bench/tests/tunable_groups_fixtures.py @@ -0,0 +1,103 @@ +# +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT License. +# +""" +Common fixtures for mock TunableGroups. +""" + +from typing import Any, Dict + +import pytest + +import json5 as json + +from mlos_bench.config.schemas import ConfigSchema +from mlos_bench.tunables.covariant_group import CovariantTunableGroup +from mlos_bench.tunables.tunable_groups import TunableGroups + +# pylint: disable=redefined-outer-name + +TUNABLE_GROUPS_JSON = """ +{ + "provision": { + "cost": 1000, + "params": { + "vmSize": { + "description": "Azure VM size", + "type": "categorical", + "default": "Standard_B4ms", + "values": ["Standard_B2s", "Standard_B2ms", "Standard_B4ms"] + } + } + }, + "boot": { + "cost": 300, + "params": { + "idle": { + "description": "Idling method", + "type": "categorical", + "default": "halt", + "values": ["halt", "mwait", "noidle"] + } + } + }, + "kernel": { + "cost": 1, + "params": { + "kernel_sched_migration_cost_ns": { + "description": "Cost of migrating the thread to another core", + "type": "int", + "default": -1, + "range": [0, 500000], + "special": [-1, 0] + }, + "kernel_sched_latency_ns": { + "description": "Initial value for the scheduler period", + "type": "int", + "default": 2000000, + "range": [0, 1000000000] + } + } + } +} +""" + + +@pytest.fixture +def tunable_groups_config() -> Dict[str, Any]: + """ + Fixture to get the JSON string for the tunable groups. + """ + conf = json.loads(TUNABLE_GROUPS_JSON) + assert isinstance(conf, dict) + ConfigSchema.TUNABLE_PARAMS.validate(conf) + return conf + + +@pytest.fixture +def tunable_groups(tunable_groups_config: dict) -> TunableGroups: + """ + A test fixture that produces a mock TunableGroups. + + Returns + ------- + tunable_groups : TunableGroups + A new TunableGroups object for testing. + """ + tunables = TunableGroups(tunable_groups_config) + tunables.reset() + return tunables + + +@pytest.fixture +def covariant_group(tunable_groups: TunableGroups) -> CovariantTunableGroup: + """ + Text fixture to get a CovariantTunableGroup from tunable_groups. + + Returns + ------- + CovariantTunableGroup + """ + (_, covariant_group) = next(iter(tunable_groups)) + return covariant_group