From ff95f0d5eb185ee0e41280c20bdaa396742d3934 Mon Sep 17 00:00:00 2001 From: Bryan J Smith Date: Thu, 30 Jan 2020 14:39:07 -0800 Subject: [PATCH] Adding nonessential code for MLOpsPython BYOC Azure doc (#163) --- .../Diabetes Ridge Regression Training.ipynb | 218 +++++++++++++++++- 1 file changed, 216 insertions(+), 2 deletions(-) diff --git a/experimentation/Diabetes Ridge Regression Training.ipynb b/experimentation/Diabetes Ridge Regression Training.ipynb index 7ae84e38..5e507f96 100644 --- a/experimentation/Diabetes Ridge Regression Training.ipynb +++ b/experimentation/Diabetes Ridge Regression Training.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -36,13 +36,227 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "X, y = load_diabetes(return_X_y=True)" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n" + ] + } + ], + "source": [ + "print(X.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "print(y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789
count4.420000e+024.420000e+024.420000e+024.420000e+024.420000e+024.420000e+024.420000e+024.420000e+024.420000e+024.420000e+02
mean-3.639623e-161.309912e-16-8.013951e-161.289818e-16-9.042540e-171.301121e-16-4.563971e-163.863174e-16-3.848103e-16-3.398488e-16
std4.761905e-024.761905e-024.761905e-024.761905e-024.761905e-024.761905e-024.761905e-024.761905e-024.761905e-024.761905e-02
min-1.072256e-01-4.464164e-02-9.027530e-02-1.123996e-01-1.267807e-01-1.156131e-01-1.023071e-01-7.639450e-02-1.260974e-01-1.377672e-01
25%-3.729927e-02-4.464164e-02-3.422907e-02-3.665645e-02-3.424784e-02-3.035840e-02-3.511716e-02-3.949338e-02-3.324879e-02-3.317903e-02
50%5.383060e-03-4.464164e-02-7.283766e-03-5.670611e-03-4.320866e-03-3.819065e-03-6.584468e-03-2.592262e-03-1.947634e-03-1.077698e-03
75%3.807591e-025.068012e-023.124802e-023.564384e-022.835801e-022.984439e-022.931150e-023.430886e-023.243323e-022.791705e-02
max1.107267e-015.068012e-021.705552e-011.320442e-011.539137e-011.987880e-011.811791e-011.852344e-011.335990e-011.356118e-01
\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 \\\n", + "count 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 \n", + "mean -3.639623e-16 1.309912e-16 -8.013951e-16 1.289818e-16 -9.042540e-17 \n", + "std 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 \n", + "min -1.072256e-01 -4.464164e-02 -9.027530e-02 -1.123996e-01 -1.267807e-01 \n", + "25% -3.729927e-02 -4.464164e-02 -3.422907e-02 -3.665645e-02 -3.424784e-02 \n", + "50% 5.383060e-03 -4.464164e-02 -7.283766e-03 -5.670611e-03 -4.320866e-03 \n", + "75% 3.807591e-02 5.068012e-02 3.124802e-02 3.564384e-02 2.835801e-02 \n", + "max 1.107267e-01 5.068012e-02 1.705552e-01 1.320442e-01 1.539137e-01 \n", + "\n", + " 5 6 7 8 9 \n", + "count 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02 \n", + "mean 1.301121e-16 -4.563971e-16 3.863174e-16 -3.848103e-16 -3.398488e-16 \n", + "std 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02 \n", + "min -1.156131e-01 -1.023071e-01 -7.639450e-02 -1.260974e-01 -1.377672e-01 \n", + "25% -3.035840e-02 -3.511716e-02 -3.949338e-02 -3.324879e-02 -3.317903e-02 \n", + "50% -3.819065e-03 -6.584468e-03 -2.592262e-03 -1.947634e-03 -1.077698e-03 \n", + "75% 2.984439e-02 2.931150e-02 3.430886e-02 3.243323e-02 2.791705e-02 \n", + "max 1.987880e-01 1.811791e-01 1.852344e-01 1.335990e-01 1.356118e-01 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "features = pd.DataFrame(X)\n", + "features.describe()" + ] + }, { "cell_type": "markdown", "metadata": {},