
2/7/24, 2:22 PM LLM Configuration | AutoGen

localhost:3000/autogen/docs/llm_configuration 1/6

LLM Configuration

LLM Configuration
In AutoGen, LLM’s are a key component required for agents to understand and react. Each

agent’s access to and configuration of LLM’s is defined by the llm_config argument in its

constructor.

The simplest possible LLM configuration that is configured to use gpt-4 from OpenAI would

be:

WARNING

It is important to never commit secrets into your code, therefore we read the OpenAI API

key from an environment variable.

This llm_config can then be passed to an agent’s constructor to enable it to use the LLM.

config_list

import os

llm_config = (
 {
 "config_list": [{"model": "gpt-4", "api_key":
os.environ["OPENAI_API_KEY"]}],
 },
)

import autogen

assistant = autogen.AssistantAgent(name="assistant",
llm_config=llm_config)

http://localhost:3000/autogen/

2/7/24, 2:22 PM LLM Configuration | AutoGen

localhost:3000/autogen/docs/llm_configuration 2/6

Different tasks may require different models, and the config_list allows specifying the

different endpoints and configurations that are to be used. It is a list of dictionaries, each of

which contains the following keys depending on the kind of endpoint being used:

OpenAI Azure OpenAI Other OpenAI compatible

model (str, required): The identifier of the model to be used, such as 'gpt-4', 'gpt-3.5-

turbo'

api_key (str, optional): The API key required for authenticating requests to the model's

API endpoint.

api_type : openai . This is optional and defaults to openai .

base_url (str, optional): The base URL of the API endpoint. This is the root address

where API calls are directed

tags (List[str], optional): Tags which can be used for filtering

Example:

TIP

By default this will create a model client which assumes an OpenAI API (or compatible)

endpoint. To use custom model clients, see here.

OAI_CONFIG_LIST Pattern

A common pattern used is to define this config_list in a file as JSON and then use the

following helper function to load it:

{
 "model": "gpt-4",
 "api_key": os.environ['OPENAI_API_KEY']
}

https://github.com/microsoft/autogen/blob/main/notebook/agentchat_custom_model.ipynb

2/7/24, 2:22 PM LLM Configuration | AutoGen

localhost:3000/autogen/docs/llm_configuration 3/6

This can be helpful as it keeps all the configuration in one place across different projects or

notebooks.

Why is it a list?

Being a list allows you to define multiple models that can be used by the agent. This is useful

for a few reasons:

If one model times out or fails, the agent can try another model.

Having a single global list of models and filtering it based on certain keys (e.g. name,

tag) in order to pass select models into a certain agent (e.g. use cheaper GPT 3.5 for

agents solving easier tasks)

How does an agent decide which model to pick out of the
list?

An agent uses the very first model available in the “config_list” and makes LLM calls against

this model. If the model fail (e.g. API throttling) the agent will retry the request against the

2nd model and so on until prompt completion is received (or throws an error if none of the

models successfully completes the request). There’s no implicit/hidden logic inside agents

that is used to pick “the best model for the task”. It is developers responsibility to pick the

right models and use them with agents.

Config list filtering

As described above the list can be filtered based on certain criteria. This is defined as a

dictionary of key to filter on and value to filter by. For example, if you have a list of configs

config_list = autogen.config_list_from_json(
 env_or_file="OAI_CONFIG_LIST",
)

Then, create the assistant agent with the config list
assistant = autogen.AssistantAgent(name="assistant", llm_config=
{"config_list": config_list})

2/7/24, 2:22 PM LLM Configuration | AutoGen

localhost:3000/autogen/docs/llm_configuration 4/6

and you want to select the one with the model “gpt-3.5-turbo” you can use the following

filter:

This can then be applied to a config list loaded in Python with filter_config :

Or, directly when loading the config list using config_list_from_json :

Other configuration
Besides the config_list , there are other parameters that can be used to configure the

LLM. These are split between parameters specifically used by Autogen and those passed into

the model client.

Autogen specific parameters

All of these are optional.

cache TODO - is this meant to still be used?

cache_seed TODO - is this meant to still be used?

allow_format_str_template TODO

context TODO

filter_func , function which can be used to filter the completions returned by the

model

filter_dict = {"model": "gpt-3.5-turbo"}

config_list = autogen.filter_config(config_list, filter_dict)

config_list =
autogen.config_list_from_json(env_or_file="OAI_CONFIG_LIST",
filter_dict)

http://localhost:3000/autogen/docs/reference/oai/openai_utils#filter_config
http://localhost:3000/autogen/docs/reference/oai/openai_utils#config_list_from_json

2/7/24, 2:22 PM LLM Configuration | AutoGen

localhost:3000/autogen/docs/llm_configuration 5/6

Extra model client parameters

It is also possible to passthrough paramters through to the OpenAI client. Parameters that

correspond to the OpenAI client or the OpenAI completions create API can be supplied.

This is commonly used for things like temperature , or timeout .

Example

Other config list loader helpers
get_config_list : Generates configurations for API calls, primarily from provided API

keys.

config_list_openai_aoai : Constructs a list of configurations using both Azure

OpenAI and OpenAI endpoints, sourcing API keys from environment variables or local

files.

llm_config = {
 "config_list": [
 {
 "model": "gpt-4",
 "api_key": os.environ.get("AZURE_OPENAI_API_KEY"),
 "api_type": "azure",
 "base_url": os.environ.get("AZURE_OPENAI_API_BASE"),
 "api_version": "2023-12-01-preview",
 },
 {
 "model": "llama-7B",
 "base_url": "http://127.0.0.1:8080",
 "api_type": "openai",
 },
],
 "temperature": 0.9,
 "timeout": 300,
}

https://github.com/openai/openai-python/blob/d231d1fa783967c1d3a1db3ba1b52647fff148ac/src/openai/_client.py#L67
https://github.com/openai/openai-python/blob/d231d1fa783967c1d3a1db3ba1b52647fff148ac/src/openai/resources/completions.py#L35
http://localhost:3000/autogen/docs/reference/oai/openai_utils#get_config_list
http://localhost:3000/autogen/docs/reference/oai/openai_utils#config_list_openai_aoai

2/7/24, 2:22 PM LLM Configuration | AutoGen

localhost:3000/autogen/docs/llm_configuration 6/6

config_list_from_models : Creates configurations based on a provided list of models,

useful when targeting specific models without manually specifying each configuration.

config_list_from_dotenv : Constructs a configuration list from a .env file, offering a

consolidated way to manage multiple API configurations and keys from a single file.

Edit this page

http://localhost:3000/autogen/docs/reference/oai/openai_utils#config_list_from_models
http://localhost:3000/autogen/docs/reference/oai/openai_utils#config_list_from_dotenv
https://github.com/microsoft/autogen/edit/main/website/docs/llm_endpoint_configuration.ipynb
https://github.com/microsoft/autogen/edit/main/website/docs/llm_endpoint_configuration.ipynb

