-
Notifications
You must be signed in to change notification settings - Fork 325
/
Copy pathappsettings.json
100 lines (100 loc) · 4.4 KB
/
appsettings.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
{
"Logging": {
"LogLevel": {
"Default": "Warning",
"Microsoft.KernelMemory.Handlers.SummarizationHandler": "Warning",
"Microsoft.AspNetCore": "Warning"
},
"Console": {
"LogToStandardErrorThreshold": "Critical",
"FormatterName": "simple",
"FormatterOptions": {
"TimestampFormat": "[HH:mm:ss.fff] ",
"SingleLine": true,
"UseUtcTimestamp": false,
"IncludeScopes": false,
"JsonWriterOptions": {
"Indented": true
}
}
}
},
"KernelMemory": {
"Services": {
"AzureOpenAIEmbedding": {
// "ApiKey" or "AzureIdentity"
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// in which case use this to change the client audience.
"AzureIdentityAudience": null,
"Endpoint": "https://<...>.openai.azure.com/",
"APIKey": "",
"Deployment": "",
// The max number of tokens supported by model deployed
// See https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
"MaxTokenTotal": 8191,
// The number of dimensions output embeddings should have.
// Only supported in "text-embedding-3" and later models developed with
// MRL, see https://arxiv.org/abs/2205.13147
"EmbeddingDimensions": null,
// How many embeddings to calculate in parallel. The max value depends on
// the model and deployment in use.
// See also hhttps://learn.microsoft.com/azure/ai-services/openai/reference#embeddings
"MaxEmbeddingBatchSize": 1,
// How many times to retry in case of throttling.
"MaxRetries": 10
},
"AzureOpenAIText": {
// "ApiKey" or "AzureIdentity"
// AzureIdentity: use automatic Entra (AAD) authentication mechanism.
// You can test locally using the AZURE_TENANT_ID, AZURE_CLIENT_ID, AZURE_CLIENT_SECRET env vars.
"Auth": "AzureIdentity",
// Optional when Auth == AzureIdentity. Leave it null to use the default.
// in which case use this to change the client audience.
"AzureIdentityAudience": null,
"Endpoint": "https://<...>.openai.azure.com/",
"APIKey": "",
"Deployment": "",
// The max number of tokens supported by model deployed
// See https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
"MaxTokenTotal": 16384,
// "ChatCompletion" or "TextCompletion"
"APIType": "ChatCompletion",
// How many times to retry in case of throttling.
"MaxRetries": 10
},
"OpenAI": {
// Name of the model used to generate text (text completion or chat completion)
"TextModel": "gpt-4o-mini",
// The max number of tokens supported by the text model.
"TextModelMaxTokenTotal": 16384,
// What type of text generation, by default autodetect using the model name.
// Possible values: "Auto", "TextCompletion", "Chat"
"TextGenerationType": "Auto",
// Name of the model used to generate text embeddings
"EmbeddingModel": "text-embedding-ada-002",
// The max number of tokens supported by the embedding model
// See https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
"EmbeddingModelMaxTokenTotal": 8191,
// OpenAI API Key
"APIKey": "",
// OpenAI Organization ID (usually empty, unless you have multiple accounts on different orgs)
"OrgId": "",
// Endpoint to use. By default the system uses 'https://api.openai.com/v1'.
// Change this to use proxies or services compatible with OpenAI HTTP protocol like LM Studio.
"Endpoint": "",
// How many times to retry in case of throttling
"MaxRetries": 10,
// The number of dimensions output embeddings should have.
// Only supported in "text-embedding-3" and later models developed with
// MRL, see https://arxiv.org/abs/2205.13147
"EmbeddingDimensions": null,
// How many embeddings to calculate in parallel.
// See https://platform.openai.com/docs/api-reference/embeddings/create
"MaxEmbeddingBatchSize": 100
}
}
}
}