forked from Dao-AILab/flash-attention
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
181 lines (156 loc) · 7.05 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
import sys
import warnings
import os
from pathlib import Path
from setuptools import setup, find_packages
import subprocess
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
def get_cuda_bare_metal_version(cuda_dir):
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
raise RuntimeError(
"Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
+ "In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
"You can try commenting out this check (at your own risk)."
)
def raise_if_cuda_home_none(global_option: str) -> None:
if CUDA_HOME is not None:
return
raise RuntimeError(
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
"only images whose names contain 'devel' will provide nvcc."
)
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
print(
"\nWarning: Torch did not find available GPUs on this system.\n",
"If your intention is to cross-compile, this is not an error.\n"
"By default, We cross-compile for Volta (compute capability 7.0), "
"Turing (compute capability 7.5),\n"
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
"If you wish to cross-compile for a single specific architecture,\n"
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
)
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5;8.0"
if int(bare_metal_minor) > 0:
os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5;8.0;8.6"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5"
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
cmdclass = {}
ext_modules = []
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
# See https://github.com/pytorch/pytorch/pull/70650
generator_flag = []
torch_dir = torch.__path__[0]
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
generator_flag = ["-DOLD_GENERATOR_PATH"]
raise_if_cuda_home_none("flash_attn")
# Check, if CUDA11 is installed for compute capability 8.0
cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) < 11:
raise RuntimeError("FlashAttention is only supported on CUDA 11")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_75,code=sm_75")
cc_flag.append("-gencode")
cc_flag.append("arch=compute_80,code=sm_80")
subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"])
ext_modules.append(
CUDAExtension(
name="flash_attn_cuda",
sources=[
"csrc/flash_attn/fmha_api.cpp",
"csrc/flash_attn/src/fmha_fwd_hdim32.cu",
"csrc/flash_attn/src/fmha_fwd_hdim64.cu",
"csrc/flash_attn/src/fmha_fwd_hdim128.cu",
"csrc/flash_attn/src/fmha_bwd_hdim32.cu",
"csrc/flash_attn/src/fmha_bwd_hdim64.cu",
"csrc/flash_attn/src/fmha_bwd_hdim128.cu",
"csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu",
"csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu",
],
extra_compile_args={
"cxx": ["-O3", "-std=c++17"] + generator_flag,
"nvcc": append_nvcc_threads(
[
"-O3",
"-std=c++17",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
"--ptxas-options=-v",
"-lineinfo"
]
+ generator_flag
+ cc_flag
),
},
include_dirs=[
Path(this_dir) / 'csrc' / 'flash_attn',
Path(this_dir) / 'csrc' / 'flash_attn' / 'src',
Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include',
],
)
)
setup(
name="flash_attn",
version="0.2.4",
packages=find_packages(
exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",)
),
author="Tri Dao",
author_email="trid@stanford.edu",
description="Flash Attention: Fast and Memory-Efficient Exact Attention",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/HazyResearch/flash-attention",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: BSD License",
"Operating System :: Unix",
],
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
python_requires=">=3.7",
install_requires=[
"torch",
"einops",
],
)