-
Notifications
You must be signed in to change notification settings - Fork 5
/
config.yaml
62 lines (57 loc) · 1.89 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
defaults:
- _self_ # Override values within this file with values in selected files.
use_cuda: True
gpu: -1
seed: null
device: cuda
workers: 4
log_freq: 10
# Parameters for wandb
wandb:
mode: online
project: diffusion_tta
# General hyper-parameters for defining the classifier, diffusion model, U-Net
# autoencoder
model:
sd_version: 1-4 # Stable Diffusion version
use_dit: False # use DiT as diffusion backbone
override_total_steps: -1 # some parameters for DiT
freeze_class_embeds: True # freeze text class embeddings
freeze_vae: False # freeze VQVAE
class_arch: resnet18 # classifier backbone
use_flash: False # use flash attention in Stable Diffusion
adapt_only_classifier: False # only adapt the classifier
# Hyper-parameters for TTA
tta:
adapt_topk: -1 # only adapt topk classes
loss: mse # distance metric for diffusion loss
model: diff_tta.models.tta.TTAGradientDescent_Class
online: False # online adaptation
use_same_noise_among_timesteps: False # use the same noise for all timesteps
random_timestep_per_iteration: True # randomly sample timesteps
rand_timestep_equal_int: False # split evenly from a random timestep to total_steps
gradient_descent:
base_learning_rate: 1e-5 # training lr for detr
weight_decay: 0 # training wd for detr
train_steps: 100 # training iteration for detr
accum_iter: 1
optimizer: adam
optimizer_momentum: 0.9
# Hyper-parameters for input
input:
root_path: /projects/katefgroup/datasets/ # CHANGE by yourself
dataset_name: ImageNetDataset
image_height: 64
image_width: 64
batch_size: 40 # how many data to fit in one gpu
disc_img_crop: 224
disc_img_resize: 232
sd_img_res: 512
use_objectnet: False
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
subsample: 3 # number of samples per category
winoground_use_auth_token: null
hydra:
run:
dir: ./outputs/${now:%Y-%m-%d}/${now:%H-%M-%S.%f}