-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoherence_tools.py
281 lines (208 loc) · 10.5 KB
/
decoherence_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import numpy as np
import scipy.integrate
import scipy.special
import scipy.signal
import tfs
import matplotlib.pyplot as plt
import re
import pandas as pd
import multiprocessing
FONTSIZE=15
PEAK_THRESHOLD=1
INTEGRAL_MAX=np.inf
def str_to_jklm(s):
pattern = re.compile(r"(?P<j>[-]?\d)(?P<k>[-]?\d)(?P<l>[-]?\d)(?P<m>[-]?\d)", re.VERBOSE)
match = pattern.match(s)
return int(match.group("j")),int(match.group("k")),int(match.group("l")),int(match.group("m"))
def calculate_Ix(I_y, w, tunes, jklm):
j, k, l,m = str_to_jklm(jklm)
divisor = ((1-j+k)*tunes['xx'] + (m-l)*tunes['yx'])
if divisor==0.:
divisor=1e-22
result = 0.5*(w - (1-j+k)*(tunes['x']+tunes['xy']*2*I_y) - (m-l)*(tunes['y']+tunes['yy']*2*I_y))/divisor
# typo in eq A.20 ?
if result<0.0:
return 0.0
return result
def calculate_Iy(I_x, w, tunes, jklm):
j, k, l,m = str_to_jklm(jklm)
divisor = ((k-j)*tunes['xy'] + (1-l+m)*tunes['yy'])
if divisor==0.:
divisor=1e-22
result = 0.5*(w - (k-j)*(tunes['x']+tunes['xx']*2*I_x) - (1-l+m)*(tunes['y']+tunes['yx']*2*I_x))/divisor
# typo in eq A.20 ?
if result<0.0:
return 0.0
return result
def calculate_Ix_limits(w, tunes, jklm):
j, k, l,m = str_to_jklm(jklm)
# find Iy where I_{x,mk0}(w, I_y) = offset + slope*I_y > 0
divisor = ((1-j+k)*tunes['xx'] + (m-l)*tunes['yx'])
if divisor ==0.:
divisor=1e-22
offset = (w - (1-j+k)*tunes['x'] - (m-l)*tunes['y'] )/divisor
slope = (-(1-j+k)*tunes['xy']*2 - (m-l)*tunes['yy']*2 )/divisor
if offset >0. and slope ==0.:
return 0., INTEGRAL_MAX
if offset <0. and slope <=0.:
return np.NaN, np.NaN
if offset >=0. and slope >=0.:
return 0., INTEGRAL_MAX
if offset >=0. and slope <0.:
return 0., np.abs(offset/slope)
if offset <=0. and slope >0.:
return np.abs(offset/slope), INTEGRAL_MAX
def calculate_Iy_limits(w, tunes, jklm):
j, k, l,m = str_to_jklm(jklm)
# find Ix where I_{y,mk0}(w, I_x) = offset + slope*I_x > 0
divisor = ((k-j)*tunes['xy'] + (1-l+m)*tunes['yy'])
if divisor ==0.:
divisor=1e-22
offset = (w - (k-j)*tunes['x'] - (1-l+m)*tunes['y'] )/divisor
slope = (-(k-j)*tunes['xx']*2 - (1-l+m)*tunes['yx']*2 )/divisor
if offset >0. and slope ==0.:
return 0., INTEGRAL_MAX
if offset <0. and slope <=0.:
return np.NaN, np.NaN
if offset >=0. and slope >=0.:
return 0., INTEGRAL_MAX
if offset >=0. and slope <0.:
return 0., np.abs(offset/slope)
if offset <=0. and slope >0.:
return np.abs(offset/slope), INTEGRAL_MAX
def integrand_Ax(I_y, w, jklm, amplitudes, tunes):
j, k, l, m = str_to_jklm(jklm)
I_x = calculate_Ix(I_y, w, tunes, jklm)
exponent= -0.5*(2*I_x + 2*I_y + amplitudes['x']**2 + amplitudes['y']**2)
actions_product = (2*I_x)**(0.5*(j+k-1))*(2*I_y)**(0.5*(l+m))
bessel_functions = scipy.special.iv((1-j+k), amplitudes['x']*np.sqrt(2*I_x))*scipy.special.iv((m-l), amplitudes['y']*np.sqrt(2*I_y))
return np.exp(exponent)*actions_product*bessel_functions
def integrand_Ay(I_x, w, jklm, amplitudes, tunes):
j, k, l, m = str_to_jklm(jklm)
I_y = calculate_Iy(I_x, w, tunes, jklm)
exponent= -0.5*(2*I_x + 2*I_y + amplitudes['x']**2 + amplitudes['y']**2)
actions_product = (2*I_x)**(0.5*(j+k))*(2*I_y)**(0.5*(l+m-1))
bessel_functions = scipy.special.iv((k-j), amplitudes['x']*np.sqrt(2*I_x))*scipy.special.iv((1-l+m), amplitudes['y']*np.sqrt(2*I_y))
return np.exp(exponent)*actions_product*bessel_functions
def calculate_Ax(w, jklm, amplitudes, tunes):
# redo this and combine with Ay, separate by jklm/planes and lines
j, k, l, m = str_to_jklm(jklm)
if j == 0:
return 0.0
Imin, Imax = calculate_Ix_limits(w, tunes, jklm)
if np.NaN in (Imin, Imax):
return 0.0
divisor=np.abs((1-j+k)*tunes['xx']+(m-l)*tunes['yx'])
if divisor==0.:
divisor=1e-22
return scipy.integrate.quad(integrand_Ax, Imin, Imax, args=(w, jklm, amplitudes, tunes,), limits=1000)[0] * j/divisor
def calculate_Ay(w, jklm, amplitudes, tunes):
j, k, l, m = str_to_jklm(jklm)
if l == 0:
return 0.0
Imin, Imax = calculate_Iy_limits(w, tunes, jklm)
if np.NaN in (Imin, Imax):
return 0.0
divisor=np.abs((k-j)*tunes['xy']+(1-l+m)*tunes['yy'])
if divisor==0.:
divisor=1e-22
return scipy.integrate.quad(integrand_Ay, Imin, Imax, args=(w, jklm, amplitudes, tunes,), limits=1000)[0] * l/divisor
def find_peak_and_width(x,y):
peaks, _ = scipy.signal.find_peaks(y, prominence=PEAK_THRESHOLD)
if len(peaks) ==0:
return np.NaN,np.NaN,0.,0.,[0.,0.]
results_half = scipy.signal.peak_widths(y, peaks, rel_height=0.5)
left = x.iloc[round(results_half[2][0])]
right = x.iloc[round(results_half[3][0])]
return y.iloc[peaks[0]], x.iloc[peaks[0]], right-left, results_half[1][0], [left, right]
def process_df_and_add_spectral_amplitude(df):
jklm = df.headers['jklm']
amplitudes={'x':df.headers['AX'], 'y':df.headers['AY']}
tunes={'x':df.headers['QX0'],
'y':df.headers['QY0'],
'xx': df.headers['QXX'],
'xy': df.headers['QXY'],
'yx': df.headers['QYX'],
'yy': df.headers['QYY']}
df['SPECTRAL_AMPLITUDE_X']=df['FREQUENCY'].map(lambda x: calculate_Ax(x, jklm, amplitudes, tunes))
df['SPECTRAL_AMPLITUDE_Y']=df['FREQUENCY'].map(lambda x: calculate_Ay(x, jklm, amplitudes, tunes))
df.headers['SPECTRAL_PEAK_X'], df.headers['SPECTRAL_FREQ_PEAK_X'], df.headers['SPECTRAL_WIDTH_X'], _, _ = find_peak_and_width(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_X'])
df.headers['SPECTRAL_PEAK_Y'], df.headers['SPECTRAL_FREQ_PEAK_Y'], df.headers['SPECTRAL_WIDTH_Y'], _, _ = find_peak_and_width(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_Y'])
df.headers['FULL_SPECTRAL_WIDTH_X'] = np.sqrt(return_quadratic_deviation(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_X']))
df.headers['FULL_SPECTRAL_WIDTH_Y'] = np.sqrt(return_quadratic_deviation(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_Y']))
return df
# create analytical spectrum using RTG thesis 4.15 and 4.16
def Ix_single_plane(w, tunes, jklm):
j, k, l,m = str_to_jklm(jklm)
result = 0.5*(w - (1-j+k)*(tunes['x']))/((1-j+k)*tunes['xx'])
if result<0.0:
return 0.0
return result
def analytical_Ax(w, jklm, amplitudes, tunes):
j, k, l, m = str_to_jklm(jklm)
if j == 0:
return 0.0
I_x = Ix_single_plane(w, tunes, jklm)
exponent= -0.5*(2*I_x + amplitudes['x']**2)
actions_product = (2*I_x)**(0.5*(j+k-1))
bessel_functions = scipy.special.iv((1-j+k), amplitudes['x']*np.sqrt(2*I_x))
return j*np.exp(exponent)*actions_product*bessel_functions/np.abs((1-j+k)*tunes['xx']+(m-l)*tunes['yx'])
def analytical_Ay(freq, jklm, amplitudes, tunes):
return 0.0
def process_df_and_add_analytical_spectral_amplitude(df):
jklm = df.headers['jklm']
amplitudes={'x':df.headers['AX'], 'y':df.headers['AY']}
tunes={'x':df.headers['QX0'],
'y':df.headers['QY0'],
'xx': df.headers['QXX'],
'xy': df.headers['QXY'],
'yx': df.headers['QYX'],
'yy': df.headers['QYY']}
df['SPECTRAL_AMPLITUDE_X']=df['FREQUENCY'].map(lambda x: analytical_Ax(x, jklm, amplitudes, tunes))
df['SPECTRAL_AMPLITUDE_Y']=df['FREQUENCY'].map(lambda x: analytical_Ay(x, jklm, amplitudes, tunes))
df.headers['SPECTRAL_PEAK_X'], df.headers['SPECTRAL_FREQ_PEAK_X'], df.headers['SPECTRAL_WIDTH_X'], _, _ = find_peak_and_width(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_X'])
df.headers['SPECTRAL_PEAK_Y'], df.headers['SPECTRAL_FREQ_PEAK_Y'], df.headers['SPECTRAL_WIDTH_Y'], _, _ = find_peak_and_width(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_Y'])
df.headers['FULL_SPECTRAL_WIDTH_X'] = np.sqrt(return_quadratic_deviation(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_X']))
df.headers['FULL_SPECTRAL_WIDTH_Y'] = np.sqrt(return_quadratic_deviation(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_Y']))
return df
def prepare_figure():
fig, ax = plt.subplots(nrows=2, ncols=1, figsize=(12,12))
ax[0].set_xlabel(r'$w~[2\pi]$', fontsize=FONTSIZE)
ax[1].set_xlabel(r'$w~[2\pi]$', fontsize=FONTSIZE)
ax[0].tick_params(axis='both', which='major', labelsize=FONTSIZE)
ax[1].tick_params(axis='both', which='major', labelsize=FONTSIZE)
ax[0].set_ylabel(r'$A_x~[a.u]$', fontsize=FONTSIZE)
ax[1].set_ylabel(r'$A_y~[a.u]$', fontsize=FONTSIZE)
return fig, ax
def add_spectrum_and_peaks(df, ax, color, label):
ax[0].plot(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_X'], color=color, linewidth=2, label=label)
peak_height, peak_freq, width, height, x_left_and_right = find_peak_and_width(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_X'])
if ~np.isnan(peak_freq):
ax[0].plot(peak_freq, df.loc[df['FREQUENCY'] == peak_freq]['SPECTRAL_AMPLITUDE_X'], color=color, marker='x', markersize=FONTSIZE)
ax[0].hlines(height, x_left_and_right[0], x_left_and_right[1], color=color, linewidth=2, alpha=0.5)
ax[0].text(peak_freq, df.loc[df['FREQUENCY'] == peak_freq]['SPECTRAL_AMPLITUDE_X'], f'Peak at {peak_freq:.4e}\nFWHM: {width:.2e}\nsigma: {df.headers["FULL_SPECTRAL_WIDTH_X"]:.2e}', fontsize=FONTSIZE)
ax[1].plot(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_Y'], color=color, linewidth=2, label=label)
peak_height,peak_freq, width, height, x_left_and_right = find_peak_and_width(df['FREQUENCY'], df['SPECTRAL_AMPLITUDE_Y'])
if ~np.isnan(peak_freq):
ax[1].plot(peak_freq, df.loc[df['FREQUENCY'] == peak_freq]['SPECTRAL_AMPLITUDE_Y'], color=color, marker='x', markersize=5)
ax[1].hlines(height, x_left_and_right[0], x_left_and_right[1], color=color, linewidth=2)
ax[1].text(peak_freq, df.loc[df['FREQUENCY'] == peak_freq]['SPECTRAL_AMPLITUDE_Y'], f'Peak at {peak_freq:.4e}\nFWHM: {width:.2e}\nsigma: {df.headers["FULL_SPECTRAL_WIDTH_X"]:.2e}', fontsize=FONTSIZE)
def return_quadratic_deviation(x,y):
w_squared = scipy.integrate.simpson(x**2*y, x)
w_weighted = scipy.integrate.simpson(x*y, x)
norm = scipy.integrate.simpson(y, x)
if norm ==0.:
return 0.
return (w_squared/norm)-(w_weighted/norm)**2
def multithreaded_iteration_through_df(df, func):
pool = multiprocessing.Pool()
results = pool.map(func, df.to_dict('records'))
pool.close()
pool.join()
return pd.concat(results, ignore_index=True)
def sigma_tune(qxx, ax):
return 2*qxx*np.sqrt(2+ax**2)
def sigma_sext(qxx, ax):
return 4*qxx*np.sqrt(3+ax**2)
def sigma_oct(qxx, ax):
return 6*qxx*np.sqrt(4+ax**2)