-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
70 lines (48 loc) · 2.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.embed = nn.Embedding(num_embeddings = vocab_size,
embedding_dim = embed_size)
self.lstm = nn.LSTM(input_size = embed_size,
hidden_size = hidden_size,
num_layers = num_layers,
batch_first = True)
self.linear = nn.Linear(in_features = hidden_size,
out_features = vocab_size)
def forward(self, features, captions):
captions = captions[:, :-1]
embedding = self.embed(captions)
embedding = torch.cat((features.unsqueeze(dim = 1), embedding), dim = 1)
lstm_out, hidden = self.lstm(embedding)
outputs = self.linear(lstm_out)
return outputs
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
predicted_sentence = []
for index in range(max_len):
lstm_out, states = self.lstm(inputs, states)
lstm_out = lstm_out.squeeze(1)
outputs = self.linear(lstm_out)
target = outputs.max(1)[1]
predicted_sentence.append(target.item())
inputs = self.embed(target).unsqueeze(1)
return predicted_sentence