-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgibbs_lda.coffee
207 lines (171 loc) · 6.63 KB
/
gibbs_lda.coffee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
###
# Please checkout LdaGibbsSampler.java for more information
# The algorithm is introduced in Tom Griffiths' paper "Gibbs sampling in
# the generative model of Latent Dirichlet Allocation" (2002)
###
fs = require 'fs'
class GibbsLdaMod
# Gibbs sampler for LDA
constructor: (docs, vSize) ->
@thinInterval = 20
@burnIn = 100
@iterations = 1000
@sampleLag = -1
@docs = docs # this is a [][] array for all documents terms
@mSize = @docs.length # document size
@vSize = vSize # vocabulary size
configure: (iters, burnIn, thinInterval, sampleLag) ->
@iterations = iters
@burnIn = burnIn
@thinInterval = thinInterval
@sampleLag = sampleLag
initialState: (kTopic) ->
@nw = Au.init2dArray @vSize, kTopic # number of instances of word_i assigned to topic_j
@nd = Au.init2dArray @mSize, kTopic # number of words in document_i assigned to topic_j
@nwsum = Au.initArray kTopic # total number of words assigned to topic_j
@ndsum = Au.initArray @mSize # total number of words in document i
# the z_i are initialzed to values in [1, K] to determine the
# init state of Markov chain
@z = Au.init2dArray @mSize, 0 # topic assignments for each word
for m in [0...@mSize]
nWords = @docs[m].length
@z[m] = Au.initArray nWords
for n in [0...nWords]
topic = parseInt(Math.random() * kTopic)
@z[m][n] = topic
# number of instances of word_i assigned to topic_j
@nw[@docs[m][n]][topic] += 1
# number of words in document_i assigned to topic_j
@nd[m][topic] += 1
# total number of words assigned to topic_j
@nwsum[topic] += 1
# total number of words in document_i
@ndsum[m] = nWords
run: (kTopic, alpha, beta) ->
@K = kTopic
@alpha = alpha
@beta = beta
start_at = new Date().getTime()
# init sampler stat
if @sampleLag > 0
@thetasum = Au.init2dArray @mSize, @K # cumulative stats of theta
@phisum = Au.init2dArray @K, @vSize # cumulative stats of phi
@numStats = 0 # size of stats
@initialState kTopic
console.log "Sampling #{@iterations} iterations with burn-in of #{@burnIn} (B/S=#{@thinInterval})."
for i in [0...@iterations]
for m in [0...@z.length]
for n in [0...@z[m].length]
topic = @sampleFullConditional m, n
@z[m][n] = topic
if i % @thinInterval is 0
if i <= @burnIn
console.log "Burn-In with iters #{i}"
else
console.log "Sampling with iters #{i}"
@debugTheta()
ella = new Date().getTime() - start_at
console.log "* time == #{ella/1000} seconds."
if i > @burnIn and @sampleLag > 0 and i % @sampleLag is 0
@updateParams()
debugTheta: ->
# only for debug monitoring usage
output = Au.initArray @K
doc = 1
for k in [0...@K]
output[k] = (@nd[doc][k] + @alpha) / (@ndsum[doc] + @K * @alpha)
output = output.sort().reverse()[0..10]
console.log output.join(' ')
sampleFullConditional: (m, n) ->
# remove z_i from the count vars
topic = @z[m][n]
@nw[@docs[m][n]][topic] -= 1
@nd[m][topic] -= 1
@nwsum[topic] -= 1
@ndsum[m] -= 1
# do multinomial sampling via cumulative method
p = Au.initArray @K
for k in [0...@K]
p[k] = (@nw[@docs[m][n]][k] + @beta) / (@nwsum[k] + @vSize * @beta)
p[k] *= (@nd[m][k] + @alpha) / (@ndsum[m] + @K * @alpha)
# cumulate multinomial parameters
for k in [1...@K]
p[k] += p[k-1]
# scale sample because of unnormalized p[]
u = Math.random() * p[@K - 1]
topic = 0
for k in [0...@K]
if u < p[k]
topic = k
break
# add newly estimated z_i to count vars
@nw[@docs[m][n]][topic] += 1
@nd[m][topic] += 1
@nwsum[topic] += 1
@ndsum[m] += 1
topic
updateParams: ->
for m in [0...@mSize]
for k in [0...@K]
@thetasum[m][k] += (@nd[m][k] + @alpha) / (@ndsum[m] + @K * @alpha)
for k in [0...@K]
for w in [0...@vSize]
@phisum[k][w] += (@nw[w][k] + @beta) / (@nwsum[k] + @vSize * @beta)
@numStats += 1
getTheta: ->
# Get the estimated document--topic associations.
# If sampleLag > 0 then the mean value of all sampled stats is for theta[][]
theta = Au.init2dArray @mSize, @K
if @sampleLag > 0 and @numstats > 0
for m in [0...@mSize]
for k in [0...@K]
theta[m][k] = @thetasum[m][k] / @numStats
else
for m in [0...@mSize]
for k in [0...@K]
theta[m][k] = (@nd[m][k] + @alpha) / (@ndsum[m] + @K * @alpha)
theta
getPhi: ->
# Get estimated word--topic associations.
# If sampleLag > 0 then the mean value of all sampled stats is for phi[][]
# WARNING: this dimensions are not same with the @phisum's
phi = Au.init2dArray @vSize, @K
if @sampleLag > 0 and @numStats > 0
for w in [0...@vSize]
for k in [0...@K]
phi[w][k] = @phisum[k][w] / @numStats
else
for w in [0...@vSize]
for k in [0...@K]
phi[w][k] = (@nw[w][k] + @beta) / (@nwsum[k] + @vSize * @beta)
phi
saveModel: (dataDir) ->
# save the model's phi and theta data for later use
_saveArray = (data, filename) ->
filepath = "#{dataDir}#{filename}"
fd = fs.openSync filepath, 'w'
for x in [0...data.length]
dataLine = data[x].join ' '
fs.writeSync fd, "#{dataLine}\n"
fs.closeSync fd
data = @getPhi()
_saveArray data, "phi.data"
data = @getTheta()
_saveArray data, "theta.data"
Au =
# Utils funcs for Array init
initArray: (x) ->
array = []
for i in [0...x]
array[i] = 0
array
init2dArray: (x, y) ->
array = []
for i in [0...x]
array[i] = []
if y isnt 0
for j in [0...y]
array[i][j] = 0
array
exports.GibbsLdaMod = GibbsLdaMod
exports.Au = Au