-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_Point2Cyl.py
781 lines (607 loc) · 31.7 KB
/
train_Point2Cyl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
# Mikaela Uy (mikacuy@cs.stanford.edu)
import argparse
import os
import sys
import torch
import torch.nn.functional as F
import datetime
import sys
import importlib
import shutil
import numpy as np
from collections import defaultdict
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR) # model
sys.path.append(os.path.join(BASE_DIR, 'models'))
## For implicit
sys.path.append(os.path.join(BASE_DIR, 'IGR'))
from sampler import *
from network import *
from general import *
from plots import plot_surface_2d
from utils import *
from data_utils import *
from dataloader import AutodeskDataset_h5_sketches
from losses import *
### For tensorboard
from torch.utils.tensorboard import SummaryWriter
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='pointnet_extrusion', help='model name')
parser.add_argument('--num_point', type=int, default=8192, help='Point Number [default: 8192]')
parser.add_argument('--num_sk_point', type=int, default=2048, help='Point Number [default: 2048]')
parser.add_argument('--K', type=int, default=8, help='Max number of extrusions')
parser.add_argument('--batch_size', type=int, default=4, help='batch size')
parser.add_argument("--logdir", default="Point2Cyl", help="path to the log directory", type=str)
parser.add_argument('--data_dir', type=str, default='data/')
parser.add_argument('--data_split', default= "train", type=str)
parser.add_argument('--num_epochs', type=int, default=300, help='Number of epochs')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--bn_decay_step', type=int, default=200000, help='Decay step for bn decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--pred_seg', action='store_true')
parser.add_argument('--pred_normal', action='store_true')
parser.add_argument('--pred_bb', action='store_true')
parser.add_argument('--pred_extrusion', action='store_true')
parser.add_argument('--pred_center', action='store_true')
parser.add_argument('--norm_eig', action='store_true')
parser.add_argument('--weight_seg', type=float, default=1.0, help='Weight for extrusion segmentation loss.')
parser.add_argument('--weight_normal', type=float, default=1.0, help='Weight for normal loss')
parser.add_argument('--weight_bb', type=float, default=1.0, help='Weight for base/barrel loss')
parser.add_argument('--weight_extrusion', type=float, default=1.0, help='Weight for extrusion axis loss')
parser.add_argument('--weight_center', type=float, default=1.0, help='Weight for center loss.')
parser.add_argument('--add_noise', action='store_true')
parser.add_argument('--noise_sigma', type=float, default=0.01, help='Sigma for random noise addition.')
parser.add_argument('--sald', action='store_true', help='sald for normal loss')
## Load ckpt
parser.add_argument('--is_pc_init', action='store_true')
parser.add_argument('--is_im_init', action='store_true')
parser.add_argument('--is_pc_train', action='store_true')
parser.add_argument('--is_im_train', action='store_true')
parser.add_argument('--is_implicitnet_train', action='store_true')
parser.add_argument("--pc_logdir", default="Point2Cyl_without_sketch", help="path to the log directory", type=str)
parser.add_argument("--pc_ckpt", default="model.pth", help="checkpoint", type=str)
parser.add_argument("--im_logdir", default="./results/IGR_dense/", help="path to the log directory", type=str)
parser.add_argument("--im_ckpt", default="latest.pth", help="checkpoint", type=str)
parser.add_argument('--is_L2', action='store_true')
parser.add_argument('--with_im_loss', action='store_true')
parser.add_argument('--use_whole_pc', action='store_true')
parser.add_argument('--use_gt_im', action='store_true')
parser.add_argument('--use_extrusion_axis_feat', action='store_true')
##
FLAGS = parser.parse_args()
LOG_DIR = FLAGS.logdir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
DATA_SPLIT = FLAGS.data_split
DATA_DIR = FLAGS.data_dir
H5_FILENAME = os.path.join(DATA_DIR, DATA_SPLIT + ".h5")
NUM_POINT = FLAGS.num_point
NUM_SK_POINT = FLAGS.num_sk_point
MODEL = FLAGS.model
K = FLAGS.K
BATCH_SIZE = FLAGS.batch_size
PRED_SEG = FLAGS.pred_seg
PRED_NORMAL = FLAGS.pred_normal
PRED_BB = FLAGS.pred_bb
PRED_EXT = FLAGS.pred_extrusion
PRED_CENTER = FLAGS.pred_center
SALD = FLAGS.sald
NORM_EIG = FLAGS.norm_eig
NUM_EPOCHS = FLAGS.num_epochs
DECAY_STEP = FLAGS.decay_step
BN_DECAY_STEP = FLAGS.bn_decay_step
DECAY_RATE = FLAGS.decay_rate
LEARNING_RATE = FLAGS.learning_rate
MOMENTUM = FLAGS.momentum
ADD_NOISE = FLAGS.add_noise
NOISE_SIGMA = FLAGS.noise_sigma
WEIGHT_SEG = FLAGS.weight_seg
WEIGHT_NORMAL = FLAGS.weight_normal
WEIGHT_BB = FLAGS.weight_bb
WEIGHT_EXTRUSION = FLAGS.weight_extrusion
WEIGHT_CENTER = FLAGS.weight_center
### Load pre-trained models ###
PC_LOGDIR = FLAGS.pc_logdir
PC_CKPT = FLAGS.pc_ckpt
IS_PC_INIT = FLAGS.is_pc_init
IS_PC_TRAIN = FLAGS.is_pc_train
IM_LOGDIR = FLAGS.im_logdir
IM_CKPT = FLAGS.im_ckpt
IS_IM_INIT = FLAGS.is_im_init
IS_IM_TRAIN = FLAGS.is_im_train
IS_IMPLICITNET_TRAIN = FLAGS.is_implicitnet_train
######
IS_L2 = FLAGS.is_L2
USE_WHOLE_PC = FLAGS.use_whole_pc
WITH_IM_LOSS = FLAGS.with_im_loss
USE_GT_IM = FLAGS.use_gt_im
USE_EXTRUSION_AXIS_FEAT = FLAGS.use_extrusion_axis_feat
LOG_FOUT.write(str(FLAGS)+'\n')
if PRED_NORMAL:
normal_loss_multiplier = WEIGHT_NORMAL
else:
normal_loss_multiplier = 0.0
if PRED_SEG:
miou_loss_multiplier = WEIGHT_SEG
else:
miou_loss_multiplier = 0.0
if PRED_EXT:
extrusion_loss_multiplier = WEIGHT_EXTRUSION
else:
extrusion_loss_multiplier = 0.0
if PRED_BB:
bb_loss_multiplier = WEIGHT_BB
else:
bb_loss_multiplier = 0.0
if PRED_CENTER:
center_loss_multiplier = WEIGHT_CENTER
else:
center_loss_multiplier = 0.0
## For summary writer
writer = SummaryWriter("runs/"+LOG_DIR)
np.random.seed(0)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
# BN Decay
def get_batch_norm_decay(global_step, batch_size, bn_decay_step, staircase=True):
BN_INIT_DECAY = 0.5
BN_DECAY_RATE = 0.5
BN_DECAY_CLIP = 0.99
p = global_step * batch_size / bn_decay_step
if staircase:
p = int(np.floor(p))
bn_momentum = max(BN_INIT_DECAY * (BN_DECAY_RATE ** p), 1-BN_DECAY_CLIP)
return bn_momentum
def update_momentum(module, bn_momentum):
for name, module_ in module.named_modules():
if 'bn' in name:
module_.momentum = bn_momentum
# LR Decay
def get_learning_rate(init_learning_rate, global_step, batch_size, decay_step, decay_rate, staircase=True):
p = global_step * batch_size / decay_step
if staircase:
p = int(np.floor(p))
learning_rate = init_learning_rate * (decay_rate ** p)
return learning_rate
def main():
dataset = AutodeskDataset_h5_sketches(H5_FILENAME, NUM_POINT, NUM_SK_POINT, K, op=False, center=True, extent=False)
to_shuffle = True
loader = torch.utils.data.DataLoader(
dataset,
batch_size=BATCH_SIZE,
num_workers=0,
pin_memory=True,
shuffle=to_shuffle,
)
device = torch.device('cuda')
MODEL_IMPORTED = importlib.import_module(MODEL)
shutil.copy('models/%s.py' % MODEL, str(LOG_DIR))
pred_sizes = []
if PRED_NORMAL:
pred_sizes.append(3)
else:
pred_sizes.append(1) ##dummy DO NOT USE in prediction
if PRED_SEG and PRED_BB:
# 2K classes instead of K
pred_sizes.append(2*K)
elif PRED_SEG:
pred_sizes.append(K)
else:
pred_sizes.append(1) ##dummy DO NOT USE in prediction
model = MODEL_IMPORTED.backbone(output_sizes=pred_sizes)
if not USE_GT_IM:
model.to(device)
# Optimizer
init_learning_rate = LEARNING_RATE
##### Switch optimizer, adagrad
# optimizer = torch.optim.Adam(model.parameters(), lr=init_learning_rate)
##### For IMPLICIT NETWORK
GLOBAL_SIGMA = 1.8
LOCAL_SIGMA = 0.01
D_IN = 2
LATENT_SIZE = 256
sampler = NormalPerPoint(GLOBAL_SIGMA, LOCAL_SIGMA)
# ## Implicit
implicit_net = ImplicitNet(d_in=D_IN+LATENT_SIZE, dims = [ 512, 512, 512, 512, 512, 512, 512, 512 ], skip_in = [4], geometric_init= True, radius_init = 1, beta=100)
implicit_net.to(device)
## PointNet
if not USE_WHOLE_PC:
pn_encoder = PointNetEncoder(LATENT_SIZE, D_IN, with_normals=True)
else:
if USE_EXTRUSION_AXIS_FEAT:
print("Using extrusion axis feat")
pn_encoder = PointNetEncoder(LATENT_SIZE, 7, with_normals=False) ## 3d pc plus confidence mask, plus extrusion axis
else:
print("Using seg label feat only")
pn_encoder = PointNetEncoder(LATENT_SIZE, 4, with_normals=False) ## 3d pc plus confidence mask, plus extrusion axis
pn_encoder.to(device)
loaded_pn_encoder = PointNetEncoder(LATENT_SIZE, D_IN, with_normals=True)
loaded_pn_encoder.to(device)
im_lr_schedules = get_learning_rate_schedules([
{
"Type" : "Step",
"Initial" : 0.001,
"Interval" : 500,
"Factor" : 0.5
},
{
"Type" : "Step",
"Initial" : 0.001,
"Interval" : 1000,
"Factor" : 0.5
}])
im_weight_decay = 0
if IS_PC_TRAIN and IS_IM_TRAIN:
optimizer = torch.optim.Adam([
{
"params": model.parameters(),
"lr": init_learning_rate
},
{
"params": pn_encoder.parameters(),
"lr": im_lr_schedules[1].get_learning_rate(0)
}])
elif IS_PC_TRAIN:
print("Only pc net.")
optimizer = torch.optim.Adam([
{
"params": model.parameters(),
"lr": init_learning_rate
}])
else:
print("Only implicit net.")
optimizer = torch.optim.Adam([
{
"params": pn_encoder.parameters(),
"lr": im_lr_schedules[1].get_learning_rate(0)
}])
#######################
global_step = 0
old_learning_rate = init_learning_rate
old_bn_momentum = MOMENTUM
### Load models
if IS_PC_INIT:
fname = os.path.join(PC_LOGDIR, PC_CKPT)
model.load_state_dict(torch.load(fname)["model"])
print("3D model loaded.")
if IS_IM_INIT:
fname = os.path.join(IM_LOGDIR, IM_CKPT)
pn_encoder.load_state_dict(torch.load(fname)["encoder_state_dict"])
print("Implicit model loaded.")
#######
### Load pre-trained model
fname = os.path.join(IM_LOGDIR, IM_CKPT)
implicit_net.load_state_dict(torch.load(fname)["model_state_dict"])
loaded_pn_encoder.load_state_dict(torch.load(fname)["encoder_state_dict"])
print("Pre-trained fixed implicit model loaded.")
## Save initial combined model
fname = os.path.join(LOG_DIR, "model.pth")
print("> Saving model to {}...".format(fname))
model_to_save = {"model": model.state_dict(), "implicit_net": implicit_net.state_dict(), "pn_encoder": pn_encoder.state_dict()}
torch.save(model_to_save, fname)
# exit()
if not USE_GT_IM:
if IS_PC_TRAIN:
model.train()
else:
model.eval()
if IS_IM_TRAIN:
pn_encoder.train()
else:
pn_encoder.eval()
implicit_net.eval()
loaded_pn_encoder.eval()
best_loss = np.Inf
for epoch in range(1, NUM_EPOCHS+1):
start = datetime.datetime.now()
scalars = defaultdict(list)
for i, batch in enumerate(loader):
sampled_pcs, sampled_normals, sampled_extrusion_labels, sampled_bb_labels, per_point_extrusion_axes, \
per_point_extrusion_distances, extrusion_axes, extrusion_distances, extrusion_centers, sampled_sketch = batch
batch_size, _, _ = sampled_pcs.size()
if ADD_NOISE:
sampled_pcs = add_noise(sampled_pcs, sampled_normals, sigma=NOISE_SIGMA)
###########
pcs = [pc.to(device, dtype=torch.float) for pc in sampled_pcs]
pcs = torch.stack(pcs)
gt_normals = [n.to(device, dtype=torch.float) for n in sampled_normals]
gt_normals = torch.stack(gt_normals)
gt_extrusion_instances = [ex.to(device, dtype=torch.long) for ex in sampled_extrusion_labels]
gt_extrusion_instances = torch.stack(gt_extrusion_instances)
gt_bb_labels = [bb.to(device, dtype=torch.long) for bb in sampled_bb_labels]
gt_bb_labels = torch.stack(gt_bb_labels)
gt_extrusion_axes = [ax.to(device, dtype=torch.float) for ax in extrusion_axes]
gt_extrusion_axes = torch.stack(gt_extrusion_axes)
gt_extrusion_centers = [c.to(device, dtype=torch.float) for c in extrusion_centers]
gt_extrusion_centers = torch.stack(gt_extrusion_centers)
gt_sketches = [sk.to(device, dtype=torch.float) for sk in sampled_sketch]
gt_sketches = torch.stack(gt_sketches)
mask_gt = get_mask_gt(gt_extrusion_instances, K)
if not USE_GT_IM:
#X, W_raw, O, _, _ = model(pcs)
X, W_raw = model(pcs)
if PRED_NORMAL:
X = F.normalize(X, p=2, dim=2, eps=1e-12)
else:
#Dummy
X = torch.zeros((batch_size, NUM_POINT, 3))
if PRED_SEG and PRED_BB:
# W : (B, N, K)
W_2K = torch.softmax(W_raw, dim=2)
## 2K classes were predicted, create segmentation pred
# Barrel
W_barrel = W_2K[:, :, ::2]
W_barrel_bb = W_raw[:, :, ::2]
# Base
W_base = W_2K[:, :, 1::2]
W_base_bb = W_raw[:, :, 1::2]
# For extrusion segmentation loss
W = W_barrel + W_base
#W = W_2K[:, :, ::2] + W_2K[:, :, 1::2]
## Base and barrel loss as mIOU
## Create base-barrel as separate classes
gt_extbb_instances = gt_extrusion_instances + gt_bb_labels*K
elif PRED_SEG:
W = torch.softmax(W_raw, dim=2)
else:
#Dummy
W = torch.zeros((batch_size, NUM_POINT, K))
#### Compute segmentation and normal losses
total_loss, total_normal_loss, total_miou_loss, matching_indices, mask = compute_all_losses(pcs, W, gt_extrusion_instances, X, gt_normals, normal_loss_multiplier, miou_loss_multiplier, return_match_indices=True)
# To compute for base and barrel loss
if (PRED_BB):
#### Compute base-barrel segmentation loss
#### mIOU from W_2K and gt_extbb_instances
cur_batch_size, _, _ = sampled_pcs.size()
W_reordered = torch.gather(W, 2, matching_indices.unsqueeze(1).expand(cur_batch_size, NUM_POINT, K)) # BxNxK
mask = mask.float()
W_reordered = torch.where((mask).unsqueeze(1).expand(cur_batch_size, NUM_POINT, K)==1, W_reordered, torch.zeros_like(W_reordered))
W_reordered = torch.softmax(W_reordered, dim=-1)
W_sorted, label = torch.sort(W_reordered, dim=-1)
segment_barrel_confidence = torch.gather(W_barrel_bb, 2, label) # BxNx1
segment_base_confidence = torch.gather(W_base_bb, 2, label) # BxNx1
BB_segment = torch.cat((segment_barrel_confidence.unsqueeze(-1), segment_base_confidence.unsqueeze(-1)), dim=-1)
gt_bb_labels_ = gt_bb_labels.unsqueeze(-1).repeat(1, 1, K)
total_bb_loss = F.cross_entropy(BB_segment.contiguous().view(batch_size*NUM_POINT*K, -1), gt_bb_labels_.view(batch_size*NUM_POINT*K), reduction='none')
total_bb_loss = total_bb_loss.view(batch_size, NUM_POINT, K)
total_bb_loss = torch.sum(total_bb_loss * W_sorted, dim=-1)
total_bb_loss = torch.mean(torch.mean(total_bb_loss, dim=-1))
else:
total_bb_loss = torch.zeros([batch_size]).to(gt_extrusion_axes.device)
total_bb_loss = torch.mean(total_bb_loss)
total_loss += bb_loss_multiplier * total_bb_loss
###### Calculate extrusion axis loss using joint base/barrel formulation
if (PRED_NORMAL and PRED_BB and PRED_EXT):
# if epoch>100 and (PRED_NORMAL and PRED_BB and PRED_EXT):
# Calculate extrusion axis with normals, pred_seg and pred_bb
# matching_indices, mask = hungarian_matching(W, gt_extrusion_instances, with_mask=True)
W_barrel_reordered = torch.gather(W_barrel, 2, matching_indices.unsqueeze(1).expand(batch_size, NUM_POINT, K)) # BxNxK
W_base_reordered = torch.gather(W_base, 2, matching_indices.unsqueeze(1).expand(batch_size, NUM_POINT, K)) # BxNxK
E_AX = estimate_extrusion_axis(X, W_barrel_reordered, W_base_reordered, gt_bb_labels, gt_extrusion_instances, normalize=NORM_EIG)
### Use angle loss with ground truth extrusion
extrusion_loss = compute_normal_loss(E_AX, gt_extrusion_axes, angle_diff=False, collapse=False)
# Only calculate loss for existing
avg_extrusion_loss = reduce_mean_masked_instance(extrusion_loss, mask_gt)
else:
# Zero loss
avg_extrusion_loss = torch.zeros([batch_size, K]).to(gt_extrusion_axes.device)
total_extrusion_loss = torch.mean(avg_extrusion_loss)*extrusion_loss_multiplier
total_loss += total_extrusion_loss
### Center loss
if PRED_CENTER:
W_reordered = torch.gather(W, 2, matching_indices.unsqueeze(1).expand(cur_batch_size, NUM_POINT, K))
predicted_centroids = estimate_extrusion_centers(W_reordered, pcs)
centroid_diff = torch.square(predicted_centroids - gt_extrusion_centers).sum(dim=-1)
avg_center_loss = reduce_mean_masked_instance(centroid_diff, mask_gt)
else:
avg_center_loss = torch.zeros([batch_size]).to(gt_extrusion_axes.device)
total_center_loss = torch.mean(avg_center_loss) * center_loss_multiplier
total_loss += total_center_loss
###### Implicit network
## Get latent code
if not USE_GT_IM:
W_reordered = torch.gather(W, 2, matching_indices.unsqueeze(1).expand(cur_batch_size, NUM_POINT, K)) # BxNxK
W_reordered = torch.where((mask).unsqueeze(1).expand(cur_batch_size, NUM_POINT, K)==1, W_reordered, torch.zeros_like(W_reordered))
if USE_WHOLE_PC:
pcs_repreated = pcs.unsqueeze(1).repeat(1,K,1,1)
W_reordered_p = W_reordered.permute(0,2,1)
W_reordered_p = W_reordered_p.unsqueeze(-1)
if USE_EXTRUSION_AXIS_FEAT:
extrusion_axis_repeated = E_AX.unsqueeze(-2).repeat(1,1,NUM_POINT,1)
global_pc = torch.cat((pcs_repreated, W_reordered_p, extrusion_axis_repeated), dim=-1)
out_dim = 7
else:
global_pc = torch.cat((pcs_repreated, W_reordered_p), dim=-1)
out_dim = 4
global_pc = global_pc.reshape(batch_size*K, -1, out_dim)
latent_codes = pn_encoder(global_pc)
else:
label = torch.argmax(W_reordered, dim=-1)
## Use prediction base/barrel
BB = torch.zeros(cur_batch_size, NUM_POINT, 2).to(device)
for j in range(K):
BB[:,:,0] += W_2K[:, :, j*2]
BB[:,:,1] += W_2K[:, :, j*2+1]
pred_bb_label = torch.argmax(BB, dim=-1)
pred_projected_pc, pred_projected_normal, pred_scales = sketch_implicit_projection(pcs, X, label, pred_bb_label, gt_extrusion_axes, gt_extrusion_centers, num_points_to_sample=NUM_SK_POINT)
gt_projected_pc, gt_projected_normal, gt_scales = sketch_implicit_projection(pcs, gt_normals, gt_extrusion_instances, gt_bb_labels, gt_extrusion_axes, gt_extrusion_centers, num_points_to_sample=NUM_SK_POINT)
gt_scales = gt_scales.unsqueeze(-1).unsqueeze(-1).repeat(1,1, pred_projected_pc.shape[-2], pred_projected_pc.shape[-1])
pred_projected_pc /= gt_scales
pred_projected_pc = pred_projected_pc.reshape(batch_size*K, NUM_SK_POINT, 2)
pred_projected_normal = pred_projected_normal.reshape(batch_size*K, NUM_SK_POINT, 2)
global_pc = torch.cat((pred_projected_pc, pred_projected_normal), dim=-1)
latent_codes = pn_encoder(global_pc)
else:
## Use GT labels
## gt_extrusion_instances, gt_bb_labels
if USE_WHOLE_PC:
pcs_repreated = pcs.unsqueeze(1).repeat(1,K,1,1)
exlabel_ = gt_extrusion_instances.view(-1)
gt_EA_W = F.one_hot(exlabel_, num_classes=K)
gt_EA_W = gt_EA_W.view(batch_size, -1, K).float()
gt_EA_W = gt_EA_W.permute(0,2,1)
gt_EA_W = gt_EA_W.unsqueeze(-1)
## Append extrusion axis
if USE_EXTRUSION_AXIS_FEAT:
extrusion_axis_repeated = gt_extrusion_axes.unsqueeze(-2).repeat(1,1,NUM_POINT,1)
global_pc = torch.cat((pcs_repreated, gt_EA_W, extrusion_axis_repeated), dim=-1)
out_dim = 7
else:
global_pc = torch.cat((pcs_repreated, gt_EA_W), dim=-1)
out_dim = 4
global_pc = global_pc.reshape(batch_size*K, -1, out_dim)
latent_codes = pn_encoder(global_pc)
else:
pred_projected_pc, pred_projected_normal, pred_scales = sketch_implicit_projection(pcs, gt_normals, gt_extrusion_instances, gt_bb_labels, gt_extrusion_axes, gt_extrusion_centers, num_points_to_sample=NUM_SK_POINT)
pred_scales = pred_scales.unsqueeze(-1).unsqueeze(-1).repeat(1,1, pred_projected_pc.shape[-2], pred_projected_pc.shape[-1])
pred_projected_pc /= pred_scales
pred_projected_pc = pred_projected_pc.reshape(batch_size*K, NUM_SK_POINT, 2)
pred_projected_normal = pred_projected_normal.reshape(batch_size*K, NUM_SK_POINT, 2)
global_pc = torch.cat((pred_projected_pc, pred_projected_normal), dim=-1)
latent_codes = pn_encoder(global_pc)
sk_pnts = gt_sketches[:, :, :, :2].view(batch_size*K, NUM_SK_POINT, 2)
sk_normals = gt_sketches[:, :, :, -2:].view(batch_size*K, NUM_SK_POINT, 2)
global_pc_gt = torch.cat((sk_pnts, sk_normals), dim=-1) ### Change this to encode segmentation prediction
latent_codes_gt = loaded_pn_encoder(global_pc_gt)
if WITH_IM_LOSS:
nonmnfld_pnts = sampler.get_points(sk_pnts)
### Sketch fitting loss
sk_pnts = add_latent(sk_pnts, latent_codes)
nonmnfld_pnts = add_latent(nonmnfld_pnts, latent_codes)
# forward pass
sk_pnts.requires_grad_()
nonmnfld_pnts.requires_grad_()
sk_pred = implicit_net(sk_pnts)
nonmnfld_pred = implicit_net(nonmnfld_pnts)
mnfld_grad = gradient(sk_pnts, sk_pred)
nonmnfld_grad = gradient(nonmnfld_pnts, nonmnfld_pred)
sk_pred = sk_pred.reshape(batch_size, K, -1, 1)
nonmnfld_grad = nonmnfld_grad.reshape(batch_size, K, -1, 2)
mnfld_grad = mnfld_grad.reshape(batch_size, K, -1, 2)
sk_normals = sk_normals.reshape(batch_size, K, -1, 2)
mnfld_loss = (sk_pred.abs()).mean(dim=-1).mean(dim=-1)
mnfld_loss = reduce_mean_masked_instance(mnfld_loss, mask_gt).mean()
# print(mnfld_loss.shape)
# eikonal loss
grad_loss = ((nonmnfld_grad.norm(2, dim=-1) - 1) ** 2).mean(dim=-1)
grad_loss = reduce_mean_masked_instance(grad_loss, mask_gt).mean()
# normals loss --> SALD
norm_sub = (mnfld_grad - sk_normals).norm(2, dim=-1)
norm_add = (mnfld_grad + sk_normals).norm(2, dim=-1)
values = torch.cat((norm_sub.unsqueeze(-1), norm_add.unsqueeze(-1)), dim=-1)
normals_loss = torch.min(values, dim=-1)[0]
normals_loss = normals_loss.mean(dim=-1)
normals_loss = reduce_mean_masked_instance(normals_loss, mask_gt).mean()
im_loss = mnfld_loss + 0.1 * grad_loss
im_loss = im_loss + 1.0 * normals_loss
else:
mnfld_loss = torch.zeros(1).to(pcs.device).mean()
grad_loss = torch.zeros(1).to(pcs.device).mean()
normals_loss = torch.zeros(1).to(pcs.device).mean()
im_loss = torch.zeros(1).to(pcs.device).mean()
##L2 loss or angle loss for the two latent codes
latent_codes = latent_codes.reshape(batch_size, K, -1)
latent_codes_gt = latent_codes_gt.reshape(batch_size, K, -1)
# print(latent_codes.shape)
# print(latent_codes_gt.shape)
if IS_L2:
latent_loss = torch.square(latent_codes - latent_codes_gt).sum(dim=-1)
latent_loss = reduce_mean_masked_instance(latent_loss, mask_gt).mean()
else:
## Angle
dot_abs = torch.sum(latent_codes * latent_codes_gt, dim=-1) # BxN
dot_abs = 1.0 - dot_abs
latent_loss = reduce_mean_masked_instance(dot_abs, mask_gt).mean()
im_loss += latent_loss
log = "Epoch: {} | Batch [{:04d}/{:04d}] | total loss: {:.4f} | latent loss: {:.4f} | manifold loss: {:.4f} | eikonal loss: {:.4f} | normal loss: {:.4f}"
log = log.format(str(epoch)+'/'+str(NUM_EPOCHS), i, len(loader), im_loss.item(), latent_loss.item(), \
mnfld_loss.item(), grad_loss.item(), normals_loss.item())
log_string(log)
scalars["IM_total_loss"].append(im_loss)
scalars["IM_latent_loss"].append(latent_loss)
scalars["IM_manifold_loss"].append(mnfld_loss)
scalars["IM_eikonal_loss"].append(grad_loss)
scalars["IM_normal_loss"].append(normals_loss)
### For tensorboard
writer.add_scalar("Loss/IM_total_loss", im_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/IM_latent_loss", latent_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/IM_manifold_loss", mnfld_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/IM_eikonal_loss", grad_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/IM_normal_loss", normals_loss, epoch*len(loader)+i)
###########
if IS_PC_TRAIN :
total_loss += im_loss
else:
total_loss = im_loss
optimizer.zero_grad()
# Updating the BN decay
bn_momentum = get_batch_norm_decay(global_step, batch_size, BN_DECAY_STEP, staircase=True)
if old_bn_momentum != bn_momentum:
update_momentum(model, bn_momentum)
old_bn_momentum = bn_momentum
# Updating the LR decay
learning_rate = get_learning_rate(init_learning_rate, global_step, batch_size, DECAY_STEP, DECAY_RATE, staircase=True)
if old_learning_rate != learning_rate:
optimizer.param_groups[0]['lr'] = learning_rate
old_learning_rate = learning_rate
total_loss.backward()
optimizer.step()
global_step += 1
now = datetime.datetime.now()
if IS_PC_TRAIN:
log = "Epoch: {} | Batch [{:04d}/{:04d}] | total loss: {:.4f} | normal loss: {:.4f} | mIOU loss: {:.4f} | ext loss: {:.4f} | bb loss: {:.4f} | center loss: {:.4f}"
log = log.format(str(epoch)+'/'+str(NUM_EPOCHS), i, len(loader), total_loss.item(), total_normal_loss.item(), \
total_miou_loss.item(), total_extrusion_loss.item(), total_bb_loss.item(), total_center_loss.item())
log_string(log)
log_string("")
scalars["normal_loss"].append(total_normal_loss)
scalars["mIOU_loss"].append(total_miou_loss)
scalars["ext_loss"].append(total_extrusion_loss)
scalars["bb_loss"].append(total_bb_loss)
scalars["center"].append(total_center_loss)
### For tensorboard
writer.add_scalar("Loss/normal", total_normal_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/segmentation_mIOU", total_miou_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/bb_CE", total_bb_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/ext_angle", total_extrusion_loss, epoch*len(loader)+i)
writer.add_scalar("Loss/center", total_center_loss, epoch*len(loader)+i)
scalars["total_loss"].append(total_loss)
writer.add_scalar("Loss/total", total_loss, epoch*len(loader)+i)
writer.flush()
if ((epoch) %10 == 0):
# Summary after each epoch
summary = {}
now = datetime.datetime.now()
duration = (now - start).total_seconds()
log = "> {} | Epoch [{:04d}/{:04d}] | duration: {:.1f}s |"
log = log.format(now.strftime("%c"), epoch, NUM_EPOCHS, duration)
for m, v in scalars.items():
summary[m] = torch.stack(v).mean()
log += " {}: {:.4f} |".format(m, summary[m].item())
fname = os.path.join(LOG_DIR, "checkpoint_{:04d}.pth".format(epoch))
print("> Saving model to {}...".format(fname))
model_to_save = {"model": model.state_dict(), "implicit_net": implicit_net.state_dict(), "pn_encoder": pn_encoder.state_dict()}
torch.save(model_to_save, fname)
if epoch >20 and summary["total_loss"] < best_loss:
best_loss = summary["total_loss"]
fname = os.path.join(LOG_DIR, "best_model.pth")
print("> Saving model to {}...".format(fname))
model_to_save = {"model": model.state_dict(), "implicit_net": implicit_net.state_dict(), "pn_encoder": pn_encoder.state_dict()}
torch.save(model_to_save, fname)
log += " best: {:.4f} |".format(best_loss)
fname = os.path.join(LOG_DIR, "train.log")
with open(fname, "a") as fp:
fp.write(log + "\n")
log_string(log)
print("--------------------------------------------------------------------------")
fname = os.path.join(LOG_DIR, "model.pth")
print("> Saving model to {}...".format(fname))
model_to_save = {"model": model.state_dict(), "implicit_net": implicit_net.state_dict(), "pn_encoder": pn_encoder.state_dict()}
torch.save(model_to_save, fname)
if __name__ == '__main__':
main()