This repository has been archived by the owner on Aug 16, 2024. It is now read-only.
forked from TUDB-Labs/mLoRA
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgenerate.py
63 lines (51 loc) · 1.58 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import fire
import torch
import mlora
def inference_callback(cur_pos, outputs):
print(f"Position: {cur_pos}")
for adapter_name, output in outputs.items():
print(f"{adapter_name} output: {output[0]}")
def main(
base_model: str,
instruction: str,
input: str = None,
template: str = None,
lora_weights: str = None,
load_16bit: bool = True,
load_8bit: bool = False,
load_4bit: bool = False,
flash_attn: bool = False,
max_seq_len: int = None,
stream: bool = False,
device: str = mlora.backend.default_device_name(),
):
model = mlora.LLMModel.from_pretrained(
base_model,
device=device,
attn_impl="flash_attn" if flash_attn else "eager",
bits=(8 if load_8bit else (4 if load_4bit else None)),
load_dtype=torch.bfloat16 if load_16bit else torch.float32,
)
tokenizer = mlora.Tokenizer(base_model)
if lora_weights:
adapter_name = model.load_adapter(lora_weights)
else:
adapter_name = model.init_adapter(mlora.AdapterConfig(adapter_name="default"))
generate_paramas = mlora.GenerateConfig(
adapter_name=adapter_name,
prompt_template=template,
prompts=[(instruction, input)],
)
output = mlora.generate(
model,
tokenizer,
[generate_paramas],
max_gen_len=max_seq_len,
stream_callback=inference_callback if stream else None,
)
for prompt in output[adapter_name]:
print(f"\n{'='*10}\n")
print(prompt)
print(f"\n{'='*10}\n")
if __name__ == "__main__":
fire.Fire(main)