-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
296 lines (220 loc) · 9.93 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
from collections import defaultdict
import pymorphy2
import razdel
from russian_tagsets import converters
from stop_words import get_stop_words
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import LabelEncoder, StandardScaler, FunctionTransformer
from sklearn.pipeline import Pipeline
from word2vec_vectorizer import Word2VecPretrainedVectorizer, Word2VecCustomVectorizer
from elmo_vectorizer import ElmoPretrainedVectorizer
from pca_transformer import PcaTransformer
from random_transformer import RandomTransformer
from tqdm import tqdm
DATA_FOLDER = os.path.join(os.path.abspath(os.path.dirname(__file__)), '../data/news')
SEED = 10
class Dataset(object):
def __init__(self,
doc_type='Lenta',
use_title=False,
rubrics=None,
subsample=1.0,
normalize_words=True,
rm_stop_words=True,
random_state=SEED,
min_len_doc_threshold=3,
max_len_doc_threshold=1000):
self.morph = pymorphy2.MorphAnalyzer(result_type=None)
self.label_encoder = LabelEncoder()
self.count_vectorizer = CountVectorizer(tokenizer=self._identity, preprocessor=self._identity, min_df=10)
self.tfidf_vectorized = TfidfVectorizer(tokenizer=self._identity, preprocessor=self._identity, min_df=10)
self.word2vec_vectorizer = Word2VecPretrainedVectorizer()
self.word2vec_custom_vectorizer = Word2VecCustomVectorizer()
self.elmo_vectorizer = ElmoPretrainedVectorizer()
self.pca_transformer = PcaTransformer(random_state=random_state)
self.random_transformer = RandomTransformer()
self.standard_scaler = StandardScaler()
self.reduce_dimension = None
self.standardize = None
self.root_path = os.path.join(DATA_FOLDER, doc_type)
self.transform_type = None
self.doc_type = doc_type
self.use_title = use_title
self.rubrics = rubrics
self.subsample = subsample
self.rm_stop_words = rm_stop_words
self.random_state = random_state
self.normalize_words = normalize_words
self.min_len_doc_threshold = min_len_doc_threshold
self.max_len_doc_threshold = max_len_doc_threshold
self.metadata = self._load_metadata()
self.docs = self._load_docs()
self.docs['text'] = self._process_docs(self.docs['text'].tolist())
self.docs = self.docs[self.docs['text'].str.len() >= self.min_len_doc_threshold]
self.docs = self.docs[self.docs['text'].str.len() <= self.max_len_doc_threshold]
self.label_encoder.fit(self.docs['label'])
self.X = None
self.y = self.label_encoder.transform(self.docs['label'])
def get_classes_balance(self, threshold=1000):
cnt = self.metadata.groupby('textrubric').size()
cnt = cnt[cnt >= threshold]
return cnt
def get_numb_words_dist(self):
return self._get_numb_words_dist()
def get_numb_words_class_dist(self, rubrics):
if not isinstance(rubrics, list):
rubrics = [rubrics]
return self._get_numb_words_dist(rubrics)
def get_word_freq_dist(self):
freq = defaultdict(int)
for doc in self.docs['text']:
for word in doc:
freq[word] += 1
return freq.values()
def get_top_words(self, n=10):
return self._get_top_words(None, n)
def get_top_ngrams(self, n_words, ngram):
return self._get_top_words(rubrics=None, n=n_words, ngram=ngram)
def get_top_words_class(self, rubrics, n=10):
if not isinstance(rubrics, list):
rubrics = [rubrics]
return self._get_top_words(rubrics, n)
def get_pos_dist(self):
pos = defaultdict(int)
for doc in self.docs['text']:
for word in doc:
p = self.morph.parse(word)[0][1].POS
if p is not None:
pos[self.morph.lat2cyr(p)] += 1
return pos
def get_data(self):
self.X = self.docs['text']
self.y = self.docs['label']
return self.X, self.y
def get_class_labels(self):
return self.label_encoder.classes_
def get_transform_pipeline(self, clf, transform_type, standardize=True, pca=False):
steps = [('extract_features', self._get_transformer(transform_type))]
if transform_type in ['bow', 'tf-idf']:
steps.append(('to_dense', FunctionTransformer(self._to_dense, accept_sparse=True)))
if standardize or pca:
steps.append(('standardization', self.standard_scaler))
if pca:
steps.append(('pca', self.pca_transformer))
steps.append(('classifier', clf))
pipeline = Pipeline(steps)
return pipeline
@staticmethod
def _to_dense(x):
return x.todense()
@staticmethod
def _identity(x):
return x
def _get_top_words(self, rubrics=None, n=10, ngram=1):
if rubrics is None:
rubrics = self.rubrics
freq = defaultdict(int)
docs = self.docs[self.docs['label'].isin(rubrics)]['text']
docs = [self._get_ngrams(doc, ngram) for doc in docs]
for doc in docs:
for word in doc:
freq[word] += 1
top_words = sorted(freq.keys(), key=lambda x: freq[x], reverse=True)[:n]
return {w: freq[w] for w in top_words}
def _get_numb_words_dist(self, rubrics=None):
if rubrics is None:
rubrics = self.rubrics
numb_words = []
for doc in self.docs[self.docs['label'].isin(rubrics)]['text']:
numb_words.append(len(doc))
return numb_words
def _get_ngrams(self, input_list, n):
return [' '.join(t) for t in zip(*[input_list[i:] for i in range(n)])]
def _process_docs(self, docs):
stop_words = get_stop_words('ru')
res = []
for doc in tqdm(docs, desc='processing docs'):
words = [t.text.lower() for t in razdel.tokenize(doc)]
words = [w for w in words if len(w) > 3]
words = [w for w in words if w.isalpha()]
if self.rm_stop_words:
words = [w for w in words if w not in stop_words]
if self.normalize_words:
words = [self.morph.parse(w)[0][2] for w in words]
res.append(words)
return res
def _load_metadata(self):
metadata_path = os.path.join(self.root_path, 'newmetadata.csv')
metadata = pd.read_csv(metadata_path, sep='\t')
if self.rubrics is not None:
metadata = metadata[metadata['textrubric'].isin(self.rubrics)].copy().reset_index(drop=True)
return metadata
def _load_docs(self):
if self.use_title:
docs = self.metadata[['textname', 'textrubric']].copy()
docs.columns = ['text', 'label']
if self.subsample < 1:
dfs = []
for c in docs['label'].unique():
data = docs[docs['label'] == c].sample(frac=self.subsample, random_state=self.random_state)
dfs.append(data)
docs = pd.concat(dfs).reset_index(drop=True)
else:
texts = []
labels = []
for rubric in tqdm(self.metadata['textrubric'].unique(), desc='loading rubrics'):
rubric_docs = self.metadata[self.metadata['textrubric'] == rubric]
if self.subsample < 1.0:
rubric_ids = rubric_docs.sample(frac=self.subsample, random_state=self.random_state)['textid']
rubric_ids = rubric_ids.tolist()
else:
rubric_ids = rubric_docs['textid'].tolist()
for doc_id in rubric_ids:
filename = os.path.join(self.root_path, 'texts', doc_id + '.txt')
try:
with open(filename) as doc_file:
texts.append(doc_file.read())
labels.append(rubric)
except FileNotFoundError:
print('file not found ' + filename)
docs = pd.DataFrame({'text': texts, 'label': labels})
return docs
def _tokenizer(self, text):
return [self.morph.parse(t.text.lower())[0][2] for t in razdel.tokenize(text)]
def _get_transformer(self, transform_type):
if transform_type == 'bow':
return self.count_vectorizer
elif transform_type == 'tf-idf':
return self.tfidf_vectorized
elif transform_type == 'word2vec':
return self.word2vec_vectorizer
elif transform_type == 'word2vec_custom':
return self.word2vec_custom_vectorizer
elif transform_type == 'elmo':
return self.elmo_vectorizer
elif transform_type == 'dummy':
return self.random_transformer
else:
raise ValueError('incorrect transform type')
if __name__ == '__main__':
rubrics = ['Мир', 'Россия', 'Политика']
ds = Dataset(use_title=False, rubrics=rubrics, normalize_words=True, subsample=0.1)
X, y = ds.get_data()
from sklearn.multiclass import OneVsRestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
clf = OneVsRestClassifier(LogisticRegression())
pipeline = ds.get_transform_pipeline(clf, 'elmo')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
pipeline.fit(X_train, y_train)
y_predicted = pipeline.predict(X_test)
print(accuracy_score(y_test, y_predicted))
pipeline = ds.get_transform_pipeline(clf, 'bow', pca=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
pipeline.fit(X_train, y_train)
y_predicted = pipeline.predict(X_test)
print(accuracy_score(y_test, y_predicted))
pass