-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_DRCT-L_SRx4_finetune_from_ImageNet_pretrain.yml
134 lines (117 loc) · 2.64 KB
/
train_DRCT-L_SRx4_finetune_from_ImageNet_pretrain.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# general settings
name: train_DRCT-L_SRx4_finetune_from_ImageNet_pretrain
model_type: DRCTModel
scale: 4
num_gpu: auto
manual_seed: 0
# dataset and data loader settings
datasets:
train:
name: DF2K
type: PairedImageDataset
dataroot_gt: datasets/DF2K/DF2K_HR_sub
dataroot_lq: datasets/DF2K/DF2K_bicx4_sub
meta_info_file: drct/data/meta_info/meta_info_DF2Ksub_GT.txt
io_backend:
type: disk
gt_size: 256
use_hflip: true
use_rot: true
# data loader
use_shuffle: true
num_worker_per_gpu: 6
batch_size_per_gpu: 4
dataset_enlarge_ratio: 1
prefetch_mode: ~
val_1:
name: Set5
type: PairedImageDataset
dataroot_gt: ./datasets/Set5/GTmod4
dataroot_lq: ./datasets/Set5/LRbicx4
io_backend:
type: disk
val_2:
name: Set14
type: PairedImageDataset
dataroot_gt: ./datasets/Set14/GTmod4
dataroot_lq: ./datasets/Set14/LRbicx4
io_backend:
type: disk
# val_3:
# name: Urban100
# type: PairedImageDataset
# dataroot_gt: ./datasets/urban100/GTmod4
# dataroot_lq: ./datasets/urban100/LRbicx4
# io_backend:
# type: disk
# network structures
network_g:
type: DRCT
upscale: 4
in_chans: 3
img_size: 64
window_size: 16
compress_ratio: 3
squeeze_factor: 30
conv_scale: 0.01
overlap_ratio: 0.5
img_range: 1.
depths: [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
embed_dim: 180
num_heads: [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
mlp_ratio: 2
upsampler: 'pixelshuffle'
resi_connection: '1conv'
# path
path:
pretrain_network_g: ./experiments/train_DRCT-L_SRx4_ImageNet_from_scratch/models/net_g_latest.pth
param_key_g: 'params_ema'
strict_load_g: true
resume_state: ~
# training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 1e-5
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: MultiStepLR
milestones: [125000, 200000, 225000, 240000]
gamma: 0.5
total_iter: 250000
warmup_iter: -1 # no warm up
# losses
pixel_opt:
type: L1Loss
loss_weight: 1.0
reduction: mean
# validation settings
val:
val_freq: !!float 5e3
save_img: false
pbar: False
metrics:
psnr:
type: calculate_psnr
crop_border: 4
test_y_channel: true
better: higher # the higher, the better. Default: higher
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: true
better: higher # the higher, the better. Default: higher
# logging settings
logger:
print_freq: 100
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500