You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you very much for the author's code. I successfully ran the dataset you provided,
but encountered this error during my attempt to train my own data. It seems to be in the automatic_mask_generator.py file in the segment_anything library, with the error message
TypeError: 'list_iterator' object is not callable.
This error occurs when attempting to call a list_iterator object, typically indicating that the code is attempting to call an iterator as a function
My environment configuration is python=3.9 CUDA 11.8 wsl Ubuntu 20.04 on 4090
pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
What I specifically did was this step:
Step 1: Generate Language Feature of the Scenes. Put the image data into the "input" directory under the <dataset_name>/, then run the following code.
“python preprocess.py --dataset_path $dataset_path ”
(langsplat) new@PC-Xu:/mnt/e/lyz/LangSplat$ python preprocess.py --dataset_path data/241117-D
/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/nn/modules/activation.py:1144: UserWarning: Converting mask without torch.bool dtype to bool; this will negatively affect performance. Prefer to use a boolean mask directly. (Triggered internally at /opt/conda/conda-bld/pytorch_16784/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/nn/modules/activation.py:1144: UserWarning: Converting mask without torch.bool dtype to bool; this will negatively affect performance. Prefer to use a boolean mask directly. (Triggered internally at /opt/conda/conda-bld/pytorch_1678402412426/work/aten/src/ATen/native/transformers/attention.cpp:150.)
return torch._native_multi_head_attention(
02412426/work/aten/src/ATen/native/transformers/attention.cpp:150.)
return torch._native_multi_head_attention(
[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.
If this is not desired, please explicitly specify '--resolution/-r' as 1
[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.
If this is not desired, please explicitly specify '--resolution/-r' as 1
Traceback (most recent call last):
File "/mnt/e/lyz/LangSplat/preprocess.py", line 129, in create
img_embed, seg_map = _embed_clip_sam_tiles(img.unsqueeze(0), sam_encoder)
Traceback (most recent call last):
File "/mnt/e/lyz/LangSplat/preprocess.py", line 129, in create
img_embed, seg_map = _embed_clip_sam_tiles(img.unsqueeze(0), sam_encoder)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 181, in _embed_clip_sam_tiles
seg_images, seg_map = sam_encoder(aug_imgs)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 181, in _embed_clip_sam_tiles
seg_images, seg_map = sam_encoder(aug_imgs)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 302, in sam_encoder
masks_default, masks_s, masks_m, masks_l = mask_generator.generate(image)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
File "/mnt/e/lyz/LangSplat/preprocess.py", line 302, in sam_encoder
masks_default, masks_s, masks_m, masks_l = mask_generator.generate(image)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 163, in generate
return func(*args, **kwargs)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 163, in generate
mask_data, mask_data_s, mask_data_m, mask_data_l = self._generate_masks(image)
mask_data, mask_data_s, mask_data_m, mask_data_l = self._generate_masks(image)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 220, in _generate_masks
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 220, in _generate_masks
crop_data, crop_data_s, crop_data_m, crop_data_l = self._process_crop(image, crop_box, layer_idx, orig_size)
crop_data, crop_data_s, crop_data_m, crop_data_l = self._process_crop(image, crop_box, layer_idx, orig_size)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 279, in _process_crop
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 279, in _process_crop
data_m.cat(batch_data_m)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/utils/amg.py", line 68, in cat
self._stats[k] = self._stats[k] + deepcopy(v)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 205, in _deepcopy_list
append(deepcopy(a, memo))
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 230, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 205, in _deepcopy_list
append(deepcopy(a, memo))
TypeError: 'list_iterator' object is not callable
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/mnt/e/lyz/LangSplat/preprocess.py", line 409, in
create(imgs, data_list, save_folder)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 131, in create
raise ValueError(timer)
ValueError: 1
The text was updated successfully, but these errors were encountered:
I also encountered one of your mistakes, mask_generator. generate (image) returns a list, but it returns four separate variables (masks_default, masks_s, masks_m, masks_l). I guess it was classified based on area, but I don't know what its range is, so I can only set it freely to make the code run
Thank you very much for the author's code. I successfully ran the dataset you provided,
but encountered this error during my attempt to train my own data. It seems to be in the automatic_mask_generator.py file in the segment_anything library, with the error message
TypeError: 'list_iterator' object is not callable.
This error occurs when attempting to call a list_iterator object, typically indicating that the code is attempting to call an iterator as a function
I tried reinstalling segment-anything-langsplat and going directly to https://github.com/facebookresearch/segment-anything.git Install segment anything langsplat, but both encounter the same issue
My environment configuration is python=3.9 CUDA 11.8 wsl Ubuntu 20.04 on 4090
pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
What I specifically did was this step:
Step 1: Generate Language Feature of the Scenes. Put the image data into the "input" directory under the <dataset_name>/, then run the following code.
“python preprocess.py --dataset_path $dataset_path ”
(langsplat) new@PC-Xu:/mnt/e/lyz/LangSplat$ python preprocess.py --dataset_path data/241117-D
/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/nn/modules/activation.py:1144: UserWarning: Converting mask without torch.bool dtype to bool; this will negatively affect performance. Prefer to use a boolean mask directly. (Triggered internally at /opt/conda/conda-bld/pytorch_16784/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/nn/modules/activation.py:1144: UserWarning: Converting mask without torch.bool dtype to bool; this will negatively affect performance. Prefer to use a boolean mask directly. (Triggered internally at /opt/conda/conda-bld/pytorch_1678402412426/work/aten/src/ATen/native/transformers/attention.cpp:150.)
return torch._native_multi_head_attention(
02412426/work/aten/src/ATen/native/transformers/attention.cpp:150.)
return torch._native_multi_head_attention(
[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.
If this is not desired, please explicitly specify '--resolution/-r' as 1
[ INFO ] Encountered quite large input images (>1080P), rescaling to 1080P.
If this is not desired, please explicitly specify '--resolution/-r' as 1
Traceback (most recent call last):
File "/mnt/e/lyz/LangSplat/preprocess.py", line 129, in create
img_embed, seg_map = _embed_clip_sam_tiles(img.unsqueeze(0), sam_encoder)
Traceback (most recent call last):
File "/mnt/e/lyz/LangSplat/preprocess.py", line 129, in create
img_embed, seg_map = _embed_clip_sam_tiles(img.unsqueeze(0), sam_encoder)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 181, in _embed_clip_sam_tiles
seg_images, seg_map = sam_encoder(aug_imgs)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 181, in _embed_clip_sam_tiles
seg_images, seg_map = sam_encoder(aug_imgs)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 302, in sam_encoder
masks_default, masks_s, masks_m, masks_l = mask_generator.generate(image)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
File "/mnt/e/lyz/LangSplat/preprocess.py", line 302, in sam_encoder
masks_default, masks_s, masks_m, masks_l = mask_generator.generate(image)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 163, in generate
return func(*args, **kwargs)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 163, in generate
mask_data, mask_data_s, mask_data_m, mask_data_l = self._generate_masks(image)
mask_data, mask_data_s, mask_data_m, mask_data_l = self._generate_masks(image)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 220, in _generate_masks
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 220, in _generate_masks
crop_data, crop_data_s, crop_data_m, crop_data_l = self._process_crop(image, crop_box, layer_idx, orig_size)
crop_data, crop_data_s, crop_data_m, crop_data_l = self._process_crop(image, crop_box, layer_idx, orig_size)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 279, in _process_crop
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/automatic_mask_generator.py", line 279, in _process_crop
data_m.cat(batch_data_m)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/site-packages/segment_anything/utils/amg.py", line 68, in cat
self._stats[k] = self._stats[k] + deepcopy(v)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 205, in _deepcopy_list
append(deepcopy(a, memo))
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 230, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 146, in deepcopy
y = copier(x, memo)
File "/home/new/anaconda3/envs/langsplat/lib/python3.9/copy.py", line 205, in _deepcopy_list
append(deepcopy(a, memo))
TypeError: 'list_iterator' object is not callable
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/mnt/e/lyz/LangSplat/preprocess.py", line 409, in
create(imgs, data_list, save_folder)
File "/mnt/e/lyz/LangSplat/preprocess.py", line 131, in create
raise ValueError(timer)
ValueError: 1
The text was updated successfully, but these errors were encountered: