forked from YuGuangWang/UFG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUFGConv_relu.py
335 lines (284 loc) · 13.6 KB
/
UFGConv_relu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import lobpcg
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
from torch_geometric.utils import get_laplacian
import math
import argparse
import os.path as osp
torch.set_default_dtype(torch.float64)
torch.set_default_tensor_type(torch.DoubleTensor)
# function for pre-processing
@torch.no_grad()
def scipy_to_torch_sparse(A):
A = sparse.coo_matrix(A)
row = torch.tensor(A.row)
col = torch.tensor(A.col)
index = torch.stack((row, col), dim=0)
value = torch.Tensor(A.data)
return torch.sparse_coo_tensor(index, value, A.shape)
# function for pre-processing
def ChebyshevApprox(f, n): # assuming f : [0, pi] -> R
quad_points = 500
c = np.zeros(n)
a = np.pi / 2
for k in range(1, n + 1):
Integrand = lambda x: np.cos((k - 1) * x) * f(a * (np.cos(x) + 1))
x = np.linspace(0, np.pi, quad_points)
y = Integrand(x)
c[k - 1] = 2 / np.pi * np.trapz(y, x)
return c
# function for pre-processing
def get_operator(L, DFilters, n, s, J, Lev):
r = len(DFilters)
c = [None] * r
for j in range(r):
c[j] = ChebyshevApprox(DFilters[j], n)
a = np.pi / 2 # consider the domain of masks as [0, pi]
# Fast Tight Frame Decomposition (FTFD)
FD1 = sparse.identity(L.shape[0])
d = dict()
for l in range(1, Lev + 1):
for j in range(r):
T0F = FD1
T1F = ((s ** (-J + l - 1) / a) * L) @ T0F - T0F
d[j, l - 1] = (1 / 2) * c[j][0] * T0F + c[j][1] * T1F
for k in range(2, n):
TkF = ((2 / a * s ** (-J + l - 1)) * L) @ T1F - 2 * T1F - T0F
T0F = T1F
T1F = TkF
d[j, l - 1] += c[j][k] * TkF
FD1 = d[0, l - 1]
return d
class UFGConv(nn.Module):
def __init__(self, in_features, out_features, r, Lev, num_nodes, shrinkage=None, threshold=1e-4, bias=True):
super(UFGConv, self).__init__()
self.Lev = Lev
self.shrinkage = shrinkage
self.threshold = threshold
self.crop_len = (Lev - 1) * num_nodes
if torch.cuda.is_available():
self.weight = nn.Parameter(torch.Tensor(in_features, out_features).cuda())
self.filter = nn.Parameter(torch.Tensor(r * Lev * num_nodes, 1).cuda())
else:
self.weight = nn.Parameter(torch.Tensor(in_features, out_features))
self.filter = nn.Parameter(torch.Tensor(r * Lev * num_nodes, 1))
if bias:
if torch.cuda.is_available():
self.bias = nn.Parameter(torch.Tensor(out_features).cuda())
else:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.filter, 0.9, 1.1)
nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
nn.init.zeros_(self.bias)
def forward(self, x, d_list):
# d_list is a list of matrix operators (torch sparse format), row-by-row
# x is a torch dense tensor
x = torch.matmul(x, self.weight)
# Fast Tight Frame Decomposition
x = torch.sparse.mm(torch.cat(d_list, dim=0), x)
# the output x has shape [r * Lev * num_nodes, #Features]
# perform wavelet shrinkage (optional)
if self.shrinkage is not None:
if self.shrinkage == 'soft':
x = torch.mul(torch.sign(x), (((torch.abs(x) - self.threshold) + torch.abs(torch.abs(x) - self.threshold)) / 2))
elif self.shrinkage == 'hard':
x = torch.mul(x, (torch.abs(x) > self.threshold))
else:
raise Exception('Shrinkage type is invalid')
# Hadamard product in spectral domain
x = self.filter * x
# filter has shape [r * Lev * num_nodes, 1]
# the output x has shape [r * Lev * num_nodes, #Features]
# Fast Tight Frame Reconstruction
x = torch.sparse.mm(torch.cat(d_list[self.Lev - 1:], dim=1), x[self.crop_len:, :])
if self.bias is not None:
x += self.bias
return x
class Net(nn.Module):
def __init__(self, num_features, nhid, num_classes, r, Lev, num_nodes, shrinkage=None, threshold=1e-4, dropout_prob=0.5):
super(Net, self).__init__()
self.GConv1 = UFGConv(num_features, nhid, r, Lev, num_nodes, shrinkage=shrinkage, threshold=threshold)
self.GConv2 = UFGConv(nhid, num_classes, r, Lev, num_nodes, shrinkage=shrinkage, threshold=threshold)
self.drop1 = nn.Dropout(dropout_prob)
def forward(self, data, d_list):
x = data.x # x has shape [num_nodes, num_input_features]
x = F.relu(self.GConv1(x, d_list))
x = self.drop1(x)
x = self.GConv2(x, d_list)
return F.log_softmax(x, dim=1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='Cora',
help='name of dataset (default: Cora)')
parser.add_argument('--reps', type=int, default=10,
help='number of repetitions (default: 10)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 200)')
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate (default: 5e-3)')
parser.add_argument('--wd', type=float, default=0.01,
help='weight decay (default: 5e-3)')
parser.add_argument('--nhid', type=int, default=16,
help='number of hidden units (default: 16)')
parser.add_argument('--Lev', type=int, default=2,
help='level of transform (default: 2)')
parser.add_argument('--s', type=float, default=2,
help='dilation scale > 1 (default: 2)')
parser.add_argument('--n', type=int, default=2,
help='n - 1 = Degree of Chebyshev Polynomial Approximation (default: n = 2)')
parser.add_argument('--FrameType', type=str, default='Haar',
help='frame type (default: Haar)')
parser.add_argument('--dropout', type=float, default=0.7,
help='dropout probability (default: 0.5)')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 0)')
parser.add_argument('--filename', type=str, default='results',
help='filename to store results and the model (default: results)')
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Training on CPU/GPU device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# load dataset
dataname = args.dataset
rootname = osp.join(osp.abspath(''), 'data', dataname)
dataset = Planetoid(root=rootname, name=dataname)
num_nodes = dataset[0].x.shape[0]
L = get_laplacian(dataset[0].edge_index, num_nodes=num_nodes, normalization='sym')
L = sparse.coo_matrix((L[1].numpy(), (L[0][0, :].numpy(), L[0][1, :].numpy())), shape=(num_nodes, num_nodes))
lobpcg_init = np.random.rand(num_nodes, 1)
lambda_max, _ = lobpcg(L, lobpcg_init)
lambda_max = lambda_max[0]
# extract decomposition/reconstruction Masks
FrameType = args.FrameType
if FrameType == 'Haar':
D1 = lambda x: np.cos(x / 2)
D2 = lambda x: np.sin(x / 2)
DFilters = [D1, D2]
RFilters = [D1, D2]
elif FrameType == 'Linear':
D1 = lambda x: np.square(np.cos(x / 2))
D2 = lambda x: np.sin(x) / np.sqrt(2)
D3 = lambda x: np.square(np.sin(x / 2))
DFilters = [D1, D2, D3]
RFilters = [D1, D2, D3]
elif FrameType == 'Quadratic': # not accurate so far
D1 = lambda x: np.cos(x / 2) ** 3
D2 = lambda x: np.multiply((np.sqrt(3) * np.sin(x / 2)), np.cos(x / 2) ** 2)
D3 = lambda x: np.multiply((np.sqrt(3) * np.sin(x / 2) ** 2), np.cos(x / 2))
D4 = lambda x: np.sin(x / 2) ** 3
DFilters = [D1, D2, D3, D4]
RFilters = [D1, D2, D3, D4]
else:
raise Exception('Invalid FrameType')
Lev = args.Lev # level of transform
s = args.s # dilation scale
n = args.n # n - 1 = Degree of Chebyshev Polynomial Approximation
J = np.log(lambda_max / np.pi) / np.log(s) + Lev - 1 # dilation level to start the decomposition
r = len(DFilters)
# get matrix operators
d = get_operator(L, DFilters, n, s, J, Lev)
# enhance sparseness of the matrix operators (optional)
# d[np.abs(d) < 0.001] = 0.0
# store the matrix operators (torch sparse format) into a list: row-by-row
d_list = list()
for i in range(r):
for l in range(Lev):
d_list.append(scipy_to_torch_sparse(d[i, l]).to(device))
'''
Training Scheme
'''
# Hyper-parameter Settings
learning_rate = args.lr
weight_decay = args.wd
nhid = args.nhid
# extract the data
data = dataset[0].to(device)
# create result matrices
num_epochs = args.epochs
num_reps = args.reps
epoch_loss = dict()
epoch_acc = dict()
epoch_loss['train_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['train_mask'] = np.zeros((num_reps, num_epochs))
epoch_loss['val_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['val_mask'] = np.zeros((num_reps, num_epochs))
epoch_loss['test_mask'] = np.zeros((num_reps, num_epochs))
epoch_acc['test_mask'] = np.zeros((num_reps, num_epochs))
saved_model_val_acc = np.zeros(num_reps)
saved_model_test_acc = np.zeros(num_reps)
for rep in range(num_reps):
print('****** Rep {}: training start ******'.format(rep + 1))
max_acc = 0.0
# initialize the model
model = Net(dataset.num_node_features, nhid, dataset.num_classes, r, Lev, num_nodes, shrinkage=None,
threshold=1e-3, dropout_prob=args.dropout).to(device)
# initialize the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
# initialize the learning rate scheduler
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True)
# training
for epoch in range(num_epochs):
# training mode
model.train()
optimizer.zero_grad()
out = model(data, d_list)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
# evaluation mode
model.eval()
out = model(data, d_list)
for i, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = out[mask].max(dim=1)[1]
correct = float(pred.eq(data.y[mask]).sum().item())
e_acc = correct / mask.sum().item()
epoch_acc[i][rep, epoch] = e_acc
e_loss = F.nll_loss(out[mask], data.y[mask])
epoch_loss[i][rep, epoch] = e_loss
# scheduler.step(epoch_loss['val_mask'][rep, epoch])
# print out results
print('Epoch: {:3d}'.format(epoch + 1),
'train_loss: {:.4f}'.format(epoch_loss['train_mask'][rep, epoch]),
'train_acc: {:.4f}'.format(epoch_acc['train_mask'][rep, epoch]),
'val_loss: {:.4f}'.format(epoch_loss['val_mask'][rep, epoch]),
'val_acc: {:.4f}'.format(epoch_acc['val_mask'][rep, epoch]),
'test_loss: {:.4f}'.format(epoch_loss['test_mask'][rep, epoch]),
'test_acc: {:.4f}'.format(epoch_acc['test_mask'][rep, epoch]))
# save model
if epoch_acc['val_mask'][rep, epoch] > max_acc:
torch.save(model.state_dict(), args.filename + '.pth')
print('=== Model saved at epoch: {:3d}'.format(epoch + 1))
max_acc = epoch_acc['val_mask'][rep, epoch]
record_test_acc = epoch_acc['test_mask'][rep, epoch]
saved_model_val_acc[rep] = max_acc
saved_model_test_acc[rep] = record_test_acc
print('#### Rep {0:2d} Finished! val acc: {1:.4f}, test acc: {2:.4f} ####\n'.format(rep + 1, max_acc, record_test_acc))
print('***************************************************************************************************************************')
print('Average test accuracy over {0:2d} reps: {1:.4f} with stdev {2:.4f}'.format(num_reps, np.mean(saved_model_test_acc), np.std(saved_model_test_acc)))
print('dataset:', args.dataset, '; epochs:', args.epochs, '; reps:', args.reps, '; learning_rate:', args.lr, '; weight_decay:', args.wd, '; nhid:', args.nhid,
'; Lev:', args.Lev)
print('s:', args.s, '; n:', args.n, '; FrameType:', args.FrameType, '; dropout:', args.dropout, '; seed:', args.seed, '; filename:', args.filename)
print('\n')
print(args.filename + '.pth', 'contains the saved model and ', args.filename + '.npz', 'contains all the values of loss and accuracy.')
print('***************************************************************************************************************************')
# save the results
np.savez(args.filename + '.npz',
epoch_train_loss=epoch_loss['train_mask'],
epoch_train_acc=epoch_acc['train_mask'],
epoch_valid_loss=epoch_loss['val_mask'],
epoch_valid_acc=epoch_acc['val_mask'],
epoch_test_loss=epoch_loss['test_mask'],
epoch_test_acc=epoch_acc['test_mask'],
saved_model_val_acc=saved_model_val_acc,
saved_model_test_acc=saved_model_test_acc)