forked from YuGuangWang/UFG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUFGPool.py
415 lines (367 loc) · 16.8 KB
/
UFGPool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import lobpcg
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import random_split
from torch_geometric.datasets import TUDataset
from torch_geometric.data import Data, DataLoader
from torch_geometric.utils import get_laplacian
from torch_geometric.nn import GCNConv
from torch_geometric.nn import global_add_pool
from torch_geometric.nn import global_max_pool
from torch_geometric.nn import global_mean_pool
from torch_geometric.utils import degree
import argparse
import os.path as osp
from QM7 import QM7, qm7_test, qm7_test_train
# function for pre-processing
@torch.no_grad()
def scipy_to_torch_sparse(A):
A = sparse.coo_matrix(A)
row = torch.tensor(A.row)
col = torch.tensor(A.col)
index = torch.stack((row, col), dim=0)
value = torch.Tensor(A.data)
return torch.sparse_coo_tensor(index, value, A.shape)
# function for pre-processing
def ChebyshevApprox(f, n): # assuming f : [0, pi] -> R
quad_points = 500
c = np.zeros(n)
a = np.pi / 2
for k in range(1, n + 1):
Integrand = lambda x: np.cos((k - 1) * x) * f(a * (np.cos(x) + 1))
x = np.linspace(0, np.pi, quad_points)
y = Integrand(x)
c[k - 1] = 2 / np.pi * np.trapz(y, x)
return c
# function for pre-processing
def get_operator(L, DFilters, n, s, J, Lev):
r = len(DFilters)
c = [None] * r
for j in range(r):
c[j] = ChebyshevApprox(DFilters[j], n)
a = np.pi / 2 # consider the domain of masks as [0, pi]
# Fast Tight Frame Decomposition (FTFD)
FD1 = sparse.identity(L.shape[0])
d = dict()
for l in range(1, Lev + 1):
for j in range(r):
T0F = FD1
T1F = ((s ** (-J + l - 1) / a) * L) @ T0F - T0F
d[j, l - 1] = (1 / 2) * c[j][0] * T0F + c[j][1] * T1F
for k in range(2, n):
TkF = ((2 / a * s ** (-J + l - 1)) * L) @ T1F - 2 * T1F - T0F
T0F = T1F
T1F = TkF
d[j, l - 1] += c[j][k] * TkF
FD1 = d[0, l - 1]
return d
# function for early_stopping
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model)
self.counter = 0
def save_checkpoint(self, val_loss, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), self.path)
self.val_loss_min = val_loss
def UFGPool(x, batch, batch_size, d_list, d_index, aggre_mode='sum'):
"""
Using Undecimated Framelet Transform for graph pooling.
:param x: batched hidden representation. shape: [# Node_Sum_Batch, # Hidden Units]
:param batch: batch index. shape: [# Node_Sum_Batch]
:param batch_size: integer batch size.
:param d_list: a list of matrix operators, where each element is a torch sparse tensor stored in a list.
:param d_index: a list of index tensors, where each element is a torch dense tensor used for aggregation.
:param aggre_mode: aggregation mode. choices: sum, max, and avg. (default: sum)
:return: batched vectorial representation for the graphs in the batch.
"""
if aggre_mode == 'sum':
f = global_add_pool
elif aggre_mode == 'avg':
f = global_mean_pool
elif aggre_mode == 'max':
f = global_max_pool
else:
raise Exception('aggregation mode is invalid')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for i in range(batch_size):
# extract the i-th graph
bi = (batch == i)
coefs = torch.sparse.mm(scipy_to_torch_sparse(d_list[i][0]).to(device), x[bi, :])
if i == 0:
x_pool = f(coefs, d_index[i][0].to(device)).flatten()
else:
x_pool = torch.vstack((x_pool, f(coefs, d_index[i][0].to(device)).flatten()))
return x_pool
class Net(nn.Module):
def __init__(self, num_features, nhid, num_classes, r, Lev, dropout_prob=0.5):
super(Net, self).__init__()
self.dropout_prob = dropout_prob
self.num_classes = num_classes
self.GConv1 = GCNConv(num_features, nhid)
self.GConv2 = GCNConv(nhid, nhid)
self.fc = nn.Sequential(nn.Linear(((r - 1) * Lev + 1) * nhid, nhid),
nn.BatchNorm1d(nhid),
nn.ReLU(),
nn.Dropout(dropout_prob),
nn.Linear(nhid, num_classes),
nn.BatchNorm1d(num_classes))
def forward(self, data):
x, edge_index, batch, d, d_index = data.x, data.edge_index, data.batch, data.d, data.d_index
batch_size = int(batch.max() + 1)
# two convolutional layers
x = F.relu(self.GConv1(x, edge_index))
x = F.relu(self.GConv2(x, edge_index))
# one global pooling layer
x = UFGPool(x, batch, batch_size, d, d_index)
x = self.fc(x)
#x = F.log_softmax(x, dim=-1)
if num_classes == 1:
return x.view(-1)
else:
return x
def MyDataset(dataset, Lev, s, n, FrameType='Haar', add_feature=False, QM7=False):
if FrameType == 'Haar':
D1 = lambda x: np.cos(x / 2)
D2 = lambda x: np.sin(x / 2)
DFilters = [D1, D2]
elif FrameType == 'Linear':
D1 = lambda x: np.square(np.cos(x / 2))
D2 = lambda x: np.sin(x) / np.sqrt(2)
D3 = lambda x: np.square(np.sin(x / 2))
DFilters = [D1, D2, D3]
elif FrameType == 'Quadratic': # not accurate so far
D1 = lambda x: np.cos(x / 2) ** 3
D2 = lambda x: np.multiply((np.sqrt(3) * np.sin(x / 2)), np.cos(x / 2) ** 2)
D3 = lambda x: np.multiply((np.sqrt(3) * np.sin(x / 2) ** 2), np.cos(x / 2))
D4 = lambda x: np.sin(x / 2) ** 3
DFilters = [D1, D2, D3, D4]
else:
raise Exception('Invalid FrameType')
r = len(DFilters)
dataset1 = list()
label=list()
for i in range(len(dataset)):
if add_feature:
raise Exception('this function has not been completed') # will add this function as required
else:
if QM7:
x_qm7 = torch.ones(dataset[i].num_nodes, num_features)
data1 = Data(x=x_qm7, edge_index=dataset[i].edge_index, y=dataset[i].y)
data1.y_origin = dataset[i].y_origin
else:
data1 = Data(x=dataset[i].x, edge_index=dataset[i].edge_index, y=dataset[i].y)
if QM7:
label.append(dataset[i].y_origin)
# get graph Laplacian
num_nodes = data1.x.shape[0]
L = get_laplacian(dataset[i].edge_index, num_nodes=num_nodes, normalization='sym')
L = sparse.coo_matrix((L[1].numpy(), (L[0][0, :].numpy(), L[0][1, :].numpy())), shape=(num_nodes, num_nodes))
# calculate lambda max
lobpcg_init = np.random.rand(num_nodes, 1)
lambda_max, _ = lobpcg(L, lobpcg_init)
lambda_max = lambda_max[0]
J = np.log(lambda_max / np.pi) / np.log(s) + Lev - 1 # dilation level to start the decomposition
# get matrix operators
d = get_operator(L, DFilters, n, s, J, Lev)
for m in range(1, r):
for q in range(Lev):
if (m == 1) and (q == 0):
d_aggre = d[m, q]
else:
d_aggre = sparse.vstack((d_aggre, d[m, q]))
d_aggre = sparse.vstack((d[0, Lev - 1], d_aggre))
data1.d = [d_aggre]
# get d_index
a = [i for i in range((r - 1) * Lev + 1)]
data1.d_index = [torch.tensor([a[i // num_nodes] for i in range(len(a) * num_nodes)])]
# append data1 into dataset1
dataset1.append(data1)
if QM7:
mean = torch.mean(torch.Tensor(label)).item()
std = torch.sqrt(torch.var(torch.Tensor(label))).item()
return dataset1, r, mean, std
else:
return dataset1, r
def test(model, loader, device):
model.eval()
correct = 0.
loss = 0.
for data in loader:
data = data.to(device)
out = model(data)
pred = out.max(dim=1)[1]
correct += pred.eq(data.y).sum().item()
loss += F.cross_entropy(out, data.y,reduction='sum').item()
return correct / len(loader.dataset), loss / len(loader.dataset)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='PROTEINS',
help='name of dataset (default: PROTEINS), options: PROTEINS, Mutagenicity, D&D, NCI1')
parser.add_argument('--reps', type=int, default=10,
help='number of repetitions (default: 10)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 200)')
parser.add_argument('--patience', type=int, default=20,
help='early stopping criteria (default: 20)')
parser.add_argument('--lr', type=float, default=5e-3,
help='learning rate (default: 5e-3)')
parser.add_argument('--wd', type=float, default=5e-3,
help='weight decay (default: 5e-3)')
parser.add_argument('--nhid', type=int, default=64,
help='number of hidden units (default: 64)')
parser.add_argument('--batch_size', type=int, default=64,
help='batch size (default: 64)')
parser.add_argument('--Lev', type=int, default=2,
help='level of transform (default: 2)')
parser.add_argument('--s', type=float, default=2,
help='dilation scale > 1 (default: 2)')
parser.add_argument('--n', type=int, default=2,
help='n - 1 = Degree of Chebyshev Polynomial Approximation (default: n = 2)')
parser.add_argument('--FrameType', type=str, default='Haar',
help='frame type (default: Haar)')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout probability (default: 0.5)')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 0)')
parser.add_argument('--filename', type=str, default='results',
help='filename to store results and the model (default: results)')
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Training on CPU/GPU device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load dataset
dataname = args.dataset
path = osp.join(osp.abspath(''), 'data', dataname)
if dataname == 'qm7':
dataset = QM7(path)
num_features = 5
num_classes = 1
loss_criteria = F.mse_loss
dataset, rr, mean, std = MyDataset(dataset, args.Lev, args.s, args.n, FrameType=args.FrameType, QM7=True)
else:
dataset = TUDataset(path, name=dataname)
num_features = dataset.num_features
num_classes = dataset.num_classes
loss_criteria = F.cross_entropy
if num_features == 0:
dataset_temp = list()
for i in range(len(dataset)):
x = degree(dataset[i].edge_index[0], dataset[i].num_nodes).view(-1,1)
data_i = Data(x=x,edge_index=dataset[i].edge_index,y=dataset[i].y)
dataset_temp.append(data_i)
dataset,rr = MyDataset(dataset_temp, args.Lev, args.s, args.n, FrameType=args.FrameType)
num_features = 1
else:
dataset,rr = MyDataset(dataset, args.Lev, args.s, args.n, FrameType=args.FrameType)
num_training = int(len(dataset) * 0.8)
num_val = int(len(dataset) * 0.1)
num_test = len(dataset) - (num_training + num_val)
# Parameter Setting
batch_size = args.batch_size
learning_rate = args.lr
weight_decay = args.wd
nhid = args.nhid
epochs = args.epochs
num_reps = args.reps
# create results matrix
epoch_train_loss = np.zeros((num_reps, epochs))
epoch_train_acc = np.zeros((num_reps, epochs))
epoch_valid_loss = np.zeros((num_reps, epochs))
epoch_valid_acc = np.zeros((num_reps, epochs))
epoch_test_loss = np.zeros((num_reps, epochs))
epoch_test_acc = np.zeros((num_reps, epochs))
saved_model_loss = np.zeros(num_reps)
saved_model_acc = np.zeros(num_reps)
# training
for r in range(num_reps):
training_set, validation_set, test_set = random_split(dataset, [num_training, num_val, num_test])
train_loader = DataLoader(training_set, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(validation_set, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False)
model = Net(num_features, nhid, num_classes, rr, args.Lev, dropout_prob=args.dropout).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.7, patience=5, verbose=True)
early_stopping = EarlyStopping(patience=args.patience, verbose=True, path=args.filename+'_latest.pth')
# start training
min_loss = 1e10
patience = 0
print("****** Rep {}: Training start ******".format(r+1))
for epoch in range(epochs):
model.train()
for i, data in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = loss_criteria(out, data.y, reduction='sum')
loss.backward()
optimizer.step()
if dataname == 'qm7':
train_loss = qm7_test_train(model, train_loader, device)
val_loss = qm7_test(model, val_loader, device, mean, std)
test_loss = qm7_test(model, test_loader, device, mean, std)
print("Epoch {}: Training loss: {:5f}, Validation loss: {:5f}, Test loss: {:.5f}".format(epoch+1, train_loss, val_loss, test_loss))
else:
train_acc, train_loss = test(model, train_loader, device)
val_acc, val_loss = test(model, val_loader, device)
test_acc, test_loss = test(model, test_loader, device)
epoch_train_acc[r, epoch],epoch_valid_acc[r, epoch],epoch_test_acc[r, epoch] = train_acc,val_acc,test_acc
print("Epoch {}: Training accuracy: {:.5f}; Validation accuracy: {:.5f}; Test accuracy: {:.5f}".format(epoch+1, train_acc, val_acc, test_acc))
early_stopping(val_loss, model)
if early_stopping.early_stop:
print("Early stopping \n")
break
scheduler.step(val_loss)
epoch_train_loss[r, epoch] = train_loss
epoch_valid_loss[r, epoch] = val_loss
epoch_test_loss[r, epoch] = test_loss
# Test
print("****** Test start ******")
model = Net(num_features, nhid, num_classes, rr, args.Lev, dropout_prob=args.dropout).to(device)
model.load_state_dict(torch.load(args.filename+'_latest.pth'))
if dataname == 'qm7':
test_loss = qm7_test(model, test_loader, device, mean, std)
print("Test Loss: {:.5f}".format(test_loss))
else:
test_acc, test_loss = test(model, test_loader, device)
saved_model_acc[r] = test_acc
print("Test accuracy: {:.5f}".format(test_acc))
saved_model_loss[r] = test_loss
# save the results
np.savez(args.filename + '.npz',
epoch_train_loss=epoch_train_loss,
epoch_train_acc=epoch_train_acc,
epoch_valid_loss=epoch_valid_loss,
epoch_valid_acc=epoch_valid_acc,
epoch_test_loss=epoch_test_loss,
epoch_test_acc=epoch_test_acc,
saved_model_loss=saved_model_loss,
saved_model_acc=saved_model_acc)