-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdata_labeler.py
executable file
·119 lines (96 loc) · 4.16 KB
/
data_labeler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from numpy import nan, array
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.seasonal import seasonal_decompose
from util import io, visualization
WINDOW_SIZE = 20 # one side 20, 2 side 10
STABLE_THRESES = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06]
STABLE_THRES_MEANSS = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06]
MOVEMENT_THRESES = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06]
COLOR_DICT = {'up': 'orange', 'still': 'cyan', 'down': 'blue', 'stable': 'green', 'chaos': 'red'}
def arima_decompose(data):
result = seasonal_decompose(data, freq=250)
fig = result.plot()
resid = result.resid.dropna()
seasonal = result.seasonal.dropna()
seasonal = seasonal[seasonal.index >= resid.head(1).index.values[0]]
seasonal = seasonal[seasonal.index <= resid.tail(1).index.values[0]]
chaos = abs(resid) > 0.75
plt.show()
def window_decompose(data):
rolls = data.rolling(WINDOW_SIZE, center=True)
roll_mean = rolls.mean()
data['chaos'] = nan
data['movement'] = nan
data['chaos_means'] = (data[0].values - roll_mean[0].values) ** 2
model_ols = linear_model.LinearRegression()
for i in range(len(data) - WINDOW_SIZE + 1):
data_subset = data.iloc[i: i + WINDOW_SIZE].reset_index()
model_ols.fit(data_subset.index.values.reshape(-1, 1), data_subset[0].values.reshape(-1, 1))
predict = model_ols.predict(array(range(WINDOW_SIZE)).reshape(-1, 1))
data['chaos'].iloc[int((2 * i + WINDOW_SIZE) / 2)] = mean_squared_error(data_subset[0].values, predict)
data['movement'].iloc[int((2 * i + WINDOW_SIZE) / 2)] = model_ols.coef_[0][0]
return data
def _convert_to_classes(x, thres=0.05):
if abs(x) > thres:
if x > 0:
return 2 # increase
else:
return 0
else:
return 1 # stable
def plot(data, movement_thres=0.05, stable_thres=0.06, stable_thres_means=0.05):
fig, axes = plt.subplots(2, 1, sharex=True)
data[0].plot(ax=axes[0], legend=False)
axes[0].set_ylabel('Chaos (MSE)')
data[0].plot(ax=axes[1], legend=False)
axes[1].set_ylabel('Movement')
# data[0].plot(ax=axes[2], legend=False)
# create a map function here for data[:, 2]
data['movement'].apply(lambda x: _convert_to_classes(x, movement_thres))
data['chaos'] = data['chaos'][data['chaos'].notnull()].apply(lambda x: x > stable_thres)
data['chaos_means'] = data['chaos_means'][data['chaos_means'].notnull()].apply(lambda xx: xx > stable_thres_means)
visualization.plot_colormap(fig.axes[0], data['chaos'], True)
# visualization.plot_colormap(fig.axes[2], data['chaos_means'], True)
visualization.plot_colormap(fig.axes[1], data['movement'], False)
patches = []
for k, v in COLOR_DICT.items():
patches.append(matplotlib.patches.Patch(color=v, label=k))
box = axes[-1].get_position()
axes[-1].set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9])
# Put a legend below current axis
plt.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5)
# with open('baseline.txt', 'w') as f:
# f.write(str(data['chaos'].value_counts()))
# f.write(str(data['movement'].value_counts()))
plt.savefig('%f_%f.png' % (movement_thres, stable_thres), dpi=800)
#_gpl, _ncg = io.read_future_market()
fig, ax1 = plt.subplots(1, 1)
future = io.read_future_market_v2('gpl')
#gpl_analyses = _gpl[0].to_frame()
#arima_decompose(gpl_analyses)
x = future['price']
x.plot(ax=ax1)
spot = io.read_spot_market()
spot.plot(ax=ax1)
#spot.index = spot['Tradingday']
#spot['GPL'].plot()
#spot['NCG'].plot()
#_gpl[0].plot()
#_ncg[0].plot()
plt.legend()
plt.tight_layout()
plt.show()
# data = window_decompose(gpl_analyses)
#
# # save learning data
# with open('config.yaml') as stream:
# try:
# config = yaml.load(stream)
# io.save_df(data, config['train_file'], key=str(WINDOW_SIZE))
# except yaml.YAMLError as exc:
# print(exc)