-
Notifications
You must be signed in to change notification settings - Fork 41
/
faster_rcnn_coco.txt
98 lines (98 loc) · 9.54 KB
/
faster_rcnn_coco.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
[INFO] 2020-12-12 12:04:16 ==================Configs==================
[INFO] 2020-12-12 12:04:16 MODEL:
[INFO] 2020-12-12 12:04:16 NAME: Faster_RCNN
[INFO] 2020-12-12 12:04:16 BACKBONE: resnet50
[INFO] 2020-12-12 12:04:16
[INFO] 2020-12-12 12:04:16 DATA:
[INFO] 2020-12-12 12:04:16 DATASET: coco
[INFO] 2020-12-12 12:04:16 TRANSFORM: frcnn
[INFO] 2020-12-12 12:04:16 SCALE: [800, 1333]
[INFO] 2020-12-12 12:04:16 OPTIMIZE:
[INFO] 2020-12-12 12:04:16 OPTIMIZER: sgd
[INFO] 2020-12-12 12:04:16 BASE_LR: 0.0025
[INFO] 2020-12-12 12:04:16 SCHEDULER: 1x
[INFO] 2020-12-12 12:04:16 BATCH_SIZE: 2
[INFO] 2020-12-12 12:04:16 TEST:
[INFO] 2020-12-12 12:04:16 NMS_THRESH : 0.5
[INFO] 2020-12-12 12:04:16 CONF_THRESH: 0.05
[INFO] 2020-12-12 12:04:16 MISC:
[INFO] 2020-12-12 12:04:16 VAL_FREQ: 1
[INFO] 2020-12-12 12:04:16 SAVE_FREQ: 1
[INFO] 2020-12-12 12:04:16 NUM_WORKERS: 0
[INFO] 2020-12-12 12:04:16 ==================Options==================
[INFO] 2020-12-12 12:04:16 config=configs/faster_rcnn_coco_b2.yml
[INFO] 2020-12-12 12:04:16 debug=False
[INFO] 2020-12-12 12:04:16 device=cuda:0
[INFO] 2020-12-12 12:04:16 gpu_ids=0
[INFO] 2020-12-12 12:04:16 load=None
[INFO] 2020-12-12 12:04:16 no_val=False
[INFO] 2020-12-12 12:04:16 resume=False
[INFO] 2020-12-12 12:04:16 save_path=None
[INFO] 2020-12-12 12:04:16 tag=faster_rcnn_coco_b2
[INFO] 2020-12-12 12:04:16 vis=False
[INFO] 2020-12-12 12:04:16 ===========================================
[INFO] 2020-12-12 12:04:20 train_trasforms: Compose([
OneOf([
HueSaturationValue(always_apply=False, p=0.95, hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3), val_shift_limit=(-0.3, 0.3)),
RandomBrightnessContrast(always_apply=False, p=0.95, brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), brightness_by_max=True),
], p=1.0),
ToGray(always_apply=False, p=0.01),
HorizontalFlip(always_apply=False, p=0.5),
ToTensorV2(always_apply=True, p=1.0, transpose_mask=False),
], p=1.0, bbox_params={'format': 'pascal_voc', 'label_fields': ['labels'], 'min_area': 0, 'min_visibility': 0, 'check_each_transform': True}, keypoint_params=None, additional_targets={})
[INFO] 2020-12-12 12:04:20 ===========================================
[INFO] 2020-12-12 12:04:20 val_trasforms: Compose([
ToTensorV2(always_apply=True, p=1.0, transpose_mask=False),
], p=1.0, bbox_params={'format': 'pascal_voc', 'label_fields': ['labels'], 'min_area': 0, 'min_visibility': 0, 'check_each_transform': True}, keypoint_params=None, additional_targets={})
[INFO] 2020-12-12 12:04:20 ===========================================
[INFO] 2020-12-12 12:04:20 scheduler: (Lambda scheduler)
{'epochs': [7, 10, 12], 'ratios': [1, 0.1, 0.01]}
[INFO] 2020-12-12 12:04:20 ===========================================
[INFO] 2020-12-12 15:12:45 Train epoch: 1, lr: 0.002500, (loss) loss: 0.5965 |
[INFO] 2020-12-12 15:16:56 Eva(val) epoch 1, IoU: 0.5, APs: [ 0.6872 0.32582 0.53536 0.48042 0.66229 0.60561 0.5601 0.29239 0.24813 0.36605], mAP: 0.3791957512991154
[INFO] 2020-12-12 15:17:08 Eva(val) epoch 1, IoU: 0.75, APs: [ 0.34722 0.063947 0.26989 0.12155 0.24486 0.41503 0.25496 0.080426 0.052332 0.1139], mAP: 0.1768223509752418
[INFO] 2020-12-12 15:17:17 Eva(val) epoch 1, mean of (AP50-AP95): 0.1929634007359679
[INFO] 2020-12-12 18:25:48 Train epoch: 2, lr: 0.002500, (loss) loss: 0.5486 |
[INFO] 2020-12-12 18:29:59 Eva(val) epoch 2, IoU: 0.5, APs: [ 0.71991 0.39524 0.57231 0.50616 0.73607 0.63962 0.6456 0.34895 0.29342 0.38813], mAP: 0.421294714336931
[INFO] 2020-12-12 18:30:11 Eva(val) epoch 2, IoU: 0.75, APs: [ 0.42809 0.12152 0.30707 0.16927 0.40199 0.47465 0.33386 0.10648 0.051751 0.10787], mAP: 0.22553967299490915
[INFO] 2020-12-12 18:30:21 Eva(val) epoch 2, mean of (AP50-AP95): 0.2269870416126376
[INFO] 2020-12-12 21:38:50 Train epoch: 3, lr: 0.002500, (loss) loss: 0.5254 |
[INFO] 2020-12-12 21:43:01 Eva(val) epoch 3, IoU: 0.5, APs: [ 0.72362 0.43559 0.57519 0.55964 0.7125 0.67218 0.58597 0.38751 0.31728 0.47584], mAP: 0.44363183210431584
[INFO] 2020-12-12 21:43:13 Eva(val) epoch 3, IoU: 0.75, APs: [ 0.43381 0.13219 0.31632 0.17949 0.3549 0.49738 0.29166 0.16217 0.071017 0.17143], mAP: 0.24680042877242556
[INFO] 2020-12-12 21:43:22 Eva(val) epoch 3, mean of (AP50-AP95): 0.2461470388398696
[INFO] 2020-12-13 00:51:13 Train epoch: 4, lr: 0.002500, (loss) loss: 0.4911 |
[INFO] 2020-12-13 00:55:24 Eva(val) epoch 4, IoU: 0.5, APs: [ 0.73706 0.41274 0.59095 0.57292 0.76992 0.69767 0.68868 0.38897 0.35246 0.47391], mAP: 0.4563382870602911
[INFO] 2020-12-13 00:55:36 Eva(val) epoch 4, IoU: 0.75, APs: [ 0.45184 0.11629 0.32899 0.24964 0.52239 0.56576 0.42323 0.20579 0.080933 0.18005], mAP: 0.26616232761641034
[INFO] 2020-12-13 00:55:45 Eva(val) epoch 4, mean of (AP50-AP95): 0.2593887098798856
[INFO] 2020-12-13 04:04:11 Train epoch: 5, lr: 0.002500, (loss) loss: 0.4702 |
[INFO] 2020-12-13 04:08:20 Eva(val) epoch 5, IoU: 0.5, APs: [ 0.74312 0.43781 0.60937 0.62022 0.76956 0.66618 0.69214 0.3758 0.36555 0.48448], mAP: 0.48184433153178735
[INFO] 2020-12-13 04:08:31 Eva(val) epoch 5, IoU: 0.75, APs: [ 0.46079 0.14679 0.37437 0.24253 0.49564 0.50148 0.43811 0.19097 0.088151 0.17041], mAP: 0.28581727348519925
[INFO] 2020-12-13 04:08:40 Eva(val) epoch 5, mean of (AP50-AP95): 0.2756960750119585
[INFO] 2020-12-13 07:16:39 Train epoch: 6, lr: 0.002500, (loss) loss: 0.5725 |
[INFO] 2020-12-13 07:20:49 Eva(val) epoch 6, IoU: 0.5, APs: [ 0.74812 0.47979 0.62784 0.62875 0.7825 0.72217 0.69875 0.39989 0.40879 0.50201], mAP: 0.4893109684568099
[INFO] 2020-12-13 07:21:01 Eva(val) epoch 6, IoU: 0.75, APs: [ 0.4633 0.15934 0.39581 0.27951 0.5411 0.58845 0.50386 0.22703 0.1207 0.17357], mAP: 0.29676183110683185
[INFO] 2020-12-13 07:21:11 Eva(val) epoch 6, mean of (AP50-AP95): 0.2840970144528097
[INFO] 2020-12-13 10:28:46 Train epoch: 7, lr: 0.002500, (loss) loss: 0.4900 |
[INFO] 2020-12-13 10:32:53 Eva(val) epoch 7, IoU: 0.5, APs: [ 0.75284 0.43502 0.61666 0.6275 0.80734 0.71358 0.73921 0.41786 0.38671 0.49788], mAP: 0.48430440802882957
[INFO] 2020-12-13 10:33:04 Eva(val) epoch 7, IoU: 0.75, APs: [ 0.46499 0.13037 0.37904 0.24841 0.52784 0.59454 0.50804 0.23757 0.11238 0.20523], mAP: 0.29832487880662184
[INFO] 2020-12-13 10:33:12 Eva(val) epoch 7, mean of (AP50-AP95): 0.282384018198759
[INFO] 2020-12-13 13:40:57 Train epoch: 8, lr: 0.000250, (loss) loss: 0.4994 |
[INFO] 2020-12-13 13:45:07 Eva(val) epoch 8, IoU: 0.5, APs: [ 0.78443 0.53232 0.64666 0.66711 0.851 0.76409 0.77074 0.49901 0.4735 0.54565], mAP: 0.5557991951004311
[INFO] 2020-12-13 13:45:18 Eva(val) epoch 8, IoU: 0.75, APs: [ 0.52408 0.22282 0.41798 0.32869 0.66072 0.66794 0.56301 0.27167 0.16332 0.21428], mAP: 0.36660836672018327
[INFO] 2020-12-13 13:45:27 Eva(val) epoch 8, mean of (AP50-AP95): 0.34094458278742784
[INFO] 2020-12-13 16:53:12 Train epoch: 9, lr: 0.000250, (loss) loss: 0.4110 |
[INFO] 2020-12-13 16:57:21 Eva(val) epoch 9, IoU: 0.5, APs: [ 0.78798 0.52001 0.64151 0.68755 0.85623 0.76799 0.79852 0.51662 0.4908 0.54552], mAP: 0.5644271191738964
[INFO] 2020-12-13 16:57:32 Eva(val) epoch 9, IoU: 0.75, APs: [ 0.52732 0.21071 0.40938 0.3464 0.65369 0.65671 0.60432 0.28636 0.17874 0.22224], mAP: 0.3757573766537628
[INFO] 2020-12-13 16:57:41 Eva(val) epoch 9, mean of (AP50-AP95): 0.3461654208031285
[INFO] 2020-12-13 20:05:27 Train epoch: 10, lr: 0.000250, (loss) loss: 0.3974 |
[INFO] 2020-12-13 20:09:37 Eva(val) epoch 10, IoU: 0.5, APs: [ 0.78796 0.52651 0.65792 0.69343 0.85162 0.76149 0.79895 0.52108 0.49703 0.54401], mAP: 0.565017938504939
[INFO] 2020-12-13 20:09:48 Eva(val) epoch 10, IoU: 0.75, APs: [ 0.52833 0.22674 0.42043 0.34326 0.65841 0.67951 0.59723 0.31281 0.18915 0.20796], mAP: 0.38010329416950944
[INFO] 2020-12-13 20:09:56 Eva(val) epoch 10, mean of (AP50-AP95): 0.3494919120484624
[INFO] 2020-12-13 23:18:09 Train epoch: 11, lr: 0.000025, (loss) loss: 0.4640 |
[INFO] 2020-12-13 23:22:21 Eva(val) epoch 11, IoU: 0.5, APs: [ 0.79022 0.54429 0.66111 0.6928 0.85309 0.77722 0.8011 0.51986 0.50585 0.55485], mAP: 0.570404361368837
[INFO] 2020-12-13 23:22:32 Eva(val) epoch 11, IoU: 0.75, APs: [ 0.53607 0.2463 0.43072 0.34303 0.69347 0.66733 0.60978 0.29698 0.19588 0.21661], mAP: 0.384055272088248
[INFO] 2020-12-13 23:22:40 Eva(val) epoch 11, mean of (AP50-AP95): 0.3541686056491881
[INFO] 2020-12-14 02:31:43 Train epoch: 12, lr: 0.000025, (loss) loss: 0.4022 |
[INFO] 2020-12-14 02:35:56 Eva(val) epoch 12, IoU: 0.5, APs: [ 0.79057 0.53454 0.66117 0.69366 0.85928 0.78027 0.80074 0.52125 0.50091 0.55166], mAP: 0.5703783157837059
[INFO] 2020-12-14 02:36:06 Eva(val) epoch 12, IoU: 0.75, APs: [ 0.53615 0.24479 0.42603 0.37631 0.67783 0.66517 0.60814 0.31731 0.1925 0.22687], mAP: 0.38469330189375694
[INFO] 2020-12-14 02:36:15 Eva(val) epoch 12, mean of (AP50-AP95): 0.3542743183253527