Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

how to visual outier of activation #97

Open
harleyszhang opened this issue Nov 3, 2024 · 1 comment
Open

how to visual outier of activation #97

harleyszhang opened this issue Nov 3, 2024 · 1 comment

Comments

@harleyszhang
Copy link

harleyszhang commented Nov 3, 2024

this is my visual result of activation、weight、smootha_ctivation、smooth_weight. why i din't see the phenomenon that activation outliers only exist in certain channels!
image

and my code is there, run llama-2-7b model to visual activation and weight

import torch
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from transformers import AutoModelForCausalLM, LlamaTokenizer

# 加载模型和分词器
def load_model_and_tokenizer(model_name, device):
    tokenizer = LlamaTokenizer.from_pretrained(model_name)
    tokenizer.pad_token = tokenizer.eos_token  # 设置 eos_token 为 pad_token
    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
    model.eval()
    return model, tokenizer

# 获取激活值和权重
@torch.no_grad()
def get_activations_and_weights(model, tokenizer, texts, device):
    inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True).to(device)
    outputs = model(**inputs, output_hidden_states=True)
    print("outputs.hidden_states shape",outputs.hidden_states.shape)

    activation = outputs.hidden_states[4].abs()  # 使用第四层激活值
    weight = model.model.layers[0].self_attn.q_proj.weight.abs()  # 第一层权重
    return activation, weight

# 计算 SmoothQuant 缩放因子
@torch.no_grad()
def calculate_scales(activation, weight, alpha=0.5):
    act_max = torch.amax(activation.view(-1, activation.size(-1)), dim=0).clamp(min=1e-5)
    w_max = torch.amax(weight, dim=0).clamp(min=1e-5)
    scales = act_max.pow(alpha) / w_max.pow(1 - alpha)
    return scales

# 应用 SmoothQuant 缩放因子到激活值和权重
@torch.no_grad()
def apply_smoothquant_scaling(activation, weight, scales):
    smooth_activation = activation / scales.view(1, 1, -1)
    smooth_weight = weight * scales.view(1, -1)
    return smooth_activation, smooth_weight

# 检测离群值并打印通道索引
def find_outlier_channels(activation, threshold=20):
    mean = activation.mean(dim=(0, 1))
    std = activation.std(dim=(0, 1))
    z_scores = (activation - mean) / std
    outliers = torch.where(z_scores > threshold)
    unique_channels = torch.unique(outliers[2])
    print(f"离群值所在的通道索引: {unique_channels.tolist()}")

# 3D 绘图函数
def plot_3d(data, title, xlabel, ylabel, zlabel, color, ax, y_max):
    x, y = np.meshgrid(np.arange(data.shape[1]), np.arange(data.shape[0]))
    x, y = x.flatten(), y.flatten()
    z = np.zeros_like(x)
    dx = dy = 1
    dz = data.flatten()
    ax.bar3d(x, y, z, dx, dy, dz, color=color, zsort='average')
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_zlabel(zlabel)
    ax.set_zlim(0, y_max)

# 主函数
def main():
    model_name = "./llm-awq/hf_weight/llama-2-7b/"
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model, tokenizer = load_model_and_tokenizer(model_name, device)

    # 处理输入文本
    input_texts = [
        "The quick brown fox jumps over the lazy dog.",
        "Artificial intelligence is revolutionizing the world.",
        "Large language models are powerful tools for NLP tasks."
    ]
    activation, weight = get_activations_and_weights(model, tokenizer, input_texts, device)

    # 检查离群值所在通道
    find_outlier_channels(activation)

    # 计算 SmoothQuant 缩放因子并应用平滑转换
    scales = calculate_scales(activation, weight)
    smooth_activation, smooth_weight = apply_smoothquant_scaling(activation, weight, scales)

    # 统一 y 轴范围
    y_max = max(
        activation.max().item(),
        smooth_activation.max().item(),
        weight.max().item(),
        smooth_weight.max().item()
    )

    # 绘图
    fig = plt.figure(figsize=(18, 8))
    plot_titles = [
        ("Activation (Original)", activation[0], "brown"),
        ("Activation (SmoothQuant)", smooth_activation[0], "blue"),
        ("Weight (Original)", weight, "blue"),
        ("Weight (SmoothQuant)", smooth_weight, "blue")
    ]

    for i, (title, data, color) in enumerate(plot_titles, start=1):
        ax = fig.add_subplot(1, 4, i, projection='3d')
        xlabel, ylabel = ("Channel", "Token") if "Activation" in title else ("In Channel", "Out Channel")
        plot_3d(data.cpu().numpy(), title, xlabel, ylabel, "Absolute Value", color, ax, y_max)

    fig.suptitle("SmoothQuant Visualization", fontsize=16)
    plt.tight_layout()
    plt.subplots_adjust(top=0.85)
    plt.savefig("llama2_7b_smoothquant_visualization.png", format='png', dpi=300)
    plt.show()

if __name__ == "__main__":
    main()

can you tell me what is my problem, and what is your visual code

@harleyszhang harleyszhang changed the title hwo to visual outier of activation how to visual outier of activation Nov 3, 2024
@zip-byte
Copy link

zip-byte commented Dec 2, 2024

I also want to know.😭

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants