forked from Panda381/PicoLibSDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memmap_noflash.ld
232 lines (198 loc) · 5.82 KB
/
memmap_noflash.ld
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/* Based on GCC ARM embedded samples.
Defines the following symbols for use by code:
__exidx_start
__exidx_end
__etext
__data_start__
__preinit_array_start
__preinit_array_end
__init_array_start
__init_array_end
__fini_array_start
__fini_array_end
__data_end__
__bss_start__
__bss_end__
__end__
end
__HeapLimit
__StackLimit
__StackTop
__stack (== StackTop)
*/
MEMORY
{
RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 256k /* main RAM 256KB */
SCRATCH_X(rwx) : ORIGIN = 0x20040000, LENGTH = 4k /* core 0 stack 4KB */
BOOTRAM(rwx) : ORIGIN = 0x20041000, LENGTH = 32 /* boot loader resident RAM 32B */
SCRATCH_Y(rwx) : ORIGIN = 0x20041000+32, LENGTH = 4k-32 /* core 1 stack 4KB-32B */
}
ENTRY(_reset_handler)
SECTIONS
{
/* Note in NO_FLASH builds the entry point for both the bootrom, and debugger
entry (ELF entry point), are *first* in the image, and the vector table
follows immediately afterward. This is because the bootrom enters RAM
binaries directly at their lowest address (preferring main RAM over XIP
cache-as-SRAM if both are used).
*/
.text : {
__logical_binary_start = .;
__reset_start = .;
KEEP (*(.reset))
__reset_end = .;
. = ALIGN(256);
KEEP (*(.vectors))
*(.time_critical*)
*(.text*)
. = ALIGN(4);
*(.init)
*(.fini)
/* Pull all c'tors into .text */
*crtbegin.o(.ctors)
*crtbegin?.o(.ctors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
*(SORT(.ctors.*))
*(.ctors)
/* Followed by destructors */
*crtbegin.o(.dtors)
*crtbegin?.o(.dtors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
*(SORT(.dtors.*))
*(.dtors)
*(.eh_frame*)
} > RAM
.rodata : {
*(.rodata*)
. = ALIGN(4);
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
. = ALIGN(4);
} > RAM
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} > RAM
__exidx_start = .;
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > RAM
__exidx_end = .;
/* Machine inspectable binary information */
. = ALIGN(4);
__binary_info_start = .;
.binary_info :
{
KEEP(*(.binary_info.keep.*))
*(.binary_info.*)
} > RAM
__binary_info_end = .;
. = ALIGN(4);
.data : {
/* End of .text-like segments */
__etext = .;
__data_start__ = .;
*(vtable)
*(.data*)
. = ALIGN(4);
*(.after_data.*)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__mutex_array_start = .);
KEEP(*(SORT(.mutex_array.*)))
KEEP(*(.mutex_array))
PROVIDE_HIDDEN (__mutex_array_end = .);
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(SORT(.preinit_array.*)))
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
*(SORT(.fini_array.*))
*(.fini_array)
PROVIDE_HIDDEN (__fini_array_end = .);
*(.jcr)
. = ALIGN(4);
/* All data end */
__data_end__ = .;
} > RAM
.uninitialized_data (COPY): {
. = ALIGN(4);
*(.uninitialized_data*)
} > RAM
/* Start and end symbols must be word-aligned */
/*
.scratch_x : {
__scratch_x_start__ = .;
*(.scratch_x.*)
. = ALIGN(4);
__scratch_x_end__ = .;
} > SCRATCH_X
__scratch_x_source__ = LOADADDR(.scratch_x);
.scratch_y : {
__scratch_y_start__ = .;
*(.scratch_y.*)
. = ALIGN(4);
__scratch_y_end__ = .;
} > SCRATCH_Y
__scratch_y_source__ = LOADADDR(.scratch_y);
*/
.bss : {
. = ALIGN(4);
__bss_start__ = .;
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
*(COMMON)
. = ALIGN(4);
__bss_end__ = .;
} > RAM
.heap (COPY):
{
__end__ = .;
end = __end__;
*(.heap*)
__HeapLimit = .;
/* start of free RAM for memory allocator */
. = ALIGN(16);
__malloc_start__ = .;
} > RAM
/* SCRATCH_X_STACK0 must be allocated on end of RAM to ensure allocation of RAM for malloc */
/* .stack*_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later */
.stack0_dummy (COPY): /* core 0 stack (4 KB) */
{
/* end of free RAM for memory allocator */
. = ALIGN(16);
__malloc_end__ = .;
KEEP (*(.stack0*))
} > SCRATCH_X
.bootloaderdata (COPY):
{
*(.bootloaderdata)
} > BOOTRAM
.stack1_dummy (COPY): /* core 1 stack (4 KB) */
{
KEEP (*(.stack1*))
} > SCRATCH_Y
/* stack limit is poorly named, but historically is maximum heap ptr */
__StackLimit = ORIGIN(RAM) + LENGTH(RAM);
__Stack0Top = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
__Stack1Top = ORIGIN(SCRATCH_Y) + LENGTH(SCRATCH_Y);
__Stack0Bottom = __Stack0Top - SIZEOF(.stack0_dummy);
__Stack1Bottom = __Stack1Top - SIZEOF(.stack1_dummy);
PROVIDE(__stack = __Stack0Top);
PROVIDE(__StackTop = __Stack0Top);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed")
/* ASSERT( __binary_info_header_end - __logical_binary_start <= 256, "Binary info must be in first 256 bytes of the binary") */
/* todo assert on extra code */
}