-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.py
68 lines (55 loc) · 2.44 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
def stage_training(model,train_data,train_lbl,
validation_data, validation_lbl,
callback,epochs = [1000,200],verbose = False,
loss = 'categorical_crossentropy',optimizer = 'adam'):
'''
Train a ConvNet tensorflow model using stage training
Return: A trained tensorflow Model
'''
model.compile(loss=loss, optimizer=optimizer)
model.fit(x=train_data, y=train_lbl,
batch_size=16, epochs=epochs[0], verbose= False,
callbacks=callback,
validation_data = (validation_data, validation_lbl),
shuffle=True)
for i in range(3,5):
model.layers[i].trainable = False
model.fit(x=train_data, y=train_lbl,
batch_size=16, epochs=epochs[1],
verbose= verbose, callbacks=callback,
validation_data = (validation_data, validation_lbl),
shuffle=True)
for i in range(3,5):
model.layers[i].trainable = True
for i in range(1,3):
model.layers[i].trainable = False
model.fit(x=train_data, y=train_lbl,
batch_size=16, epochs=epochs[1],
verbose= verbose, callbacks=callback,
validation_data = (validation_data, validation_lbl),
shuffle=True)
for i in range(1,3):
model.layers[i].trainable = True
model.fit(x=train_data, y=train_lbl,
batch_size=16, epochs=epochs[1],
verbose= verbose, callbacks=callback,
validation_data = (validation_data, validation_lbl),
shuffle=True)
return model
def standard_training(
model,train_data,train_lbl,
validation_data, validation_lbl,
callback,epochs = [1000,200],verbose = False,
loss = 'categorical_crossentropy',optimizer = 'adam'):
'''
Train a ConvNet tensorflow model using standard training
Return: A trained tensorflow Model
'''
model.compile(loss=loss, optimizer=optimizer)
model.fit(x=train_data, y=train_lbl,
batch_size=16, epochs=epochs[0], verbose= False,
callbacks=callback,
validation_data = (validation_data, validation_lbl),
shuffle=True)
return model