Skip to content

Latest commit

 

History

History
179 lines (167 loc) · 5.85 KB

File metadata and controls

179 lines (167 loc) · 5.85 KB

Examples of Training scripts for Non-autoregressive Machine Translation models

Non-autoregressive Transformer (NAT, Gu et al., 2017)

Note that we need to have an additional module to perform "length prediction" (--length-loss-factor) before generating the whole sequence.

fairseq-train \
    data-bin/wmt14_en_de_distill \
    --save-dir checkpoints \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion nat_loss \
    --arch nonautoregressive_transformer \
    --noise full_mask \
    --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --pred-length-offset \
    --length-loss-factor 0.1 \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \
    --max-tokens 8000 \
    --save-interval-updates 10000 \
    --max-update 300000

Fast Structured Decoding for Sequence Models (NAT-CRF, Sun et al., 2019)

Note that we implemented a low-rank appromixated CRF model by setting --crf-lowrank-approx=32 and --crf-beam-approx=64 as discribed in the original paper. All other settings are the same as the vanilla NAT model.

fairseq-train \
    data-bin/wmt14_en_de_distill \
    --save-dir checkpoints \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion nat_loss \
    --arch nacrf_transformer \
    --noise full_mask \
    --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --pred-length-offset \
    --length-loss-factor 0.1 \
    --word-ins-loss-factor 0.5 \
    --crf-lowrank-approx 32 \
    --crf-beam-approx 64 \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \
    --max-tokens 8000 \
    --save-interval-updates 10000 \
    --max-update 300000

Non-autoregressive Transformer with Iterative Refinement (iNAT, Lee et al., 2018)

Note that --train-step means how many iterations of refinement we used during training, and --dae-ratio controls the ratio of denoising auto-encoder training described in the original paper.

fairseq-train \
    data-bin/wmt14_en_de_distill \
    --save-dir checkpoints \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion nat_loss \
    --arch iterative_nonautoregressive_transformer \
    --noise full_mask \
    --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --pred-length-offset \
    --length-loss-factor 0.1 \
    --train-step 4 \
    --dae-ratio 0.5 \
    --stochastic-approx \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \
    --max-tokens 8000 \
    --save-interval-updates 10000 \
    --max-update 300000

Insertion Transformer (InsT, Stern et al., 2019)

Note that we need to specify the "slot-loss" (uniform or balanced tree) described in the original paper. Here we use --label-tau to control the temperature.

fairseq-train \
    data-bin/wmt14_en_de_distill \
    --save-dir checkpoints \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion nat_loss \
    --arch insertion_transformer \
    --noise random_delete \
    --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \
    --max-tokens 8000 \
    --save-interval-updates 10000 \
    --max-update 300000

Mask Predict (CMLM, Ghazvininejad et al., 2019)

fairseq-train \
    data-bin/wmt14_en_de_distill \
    --save-dir checkpoints \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion nat_loss \
    --arch cmlm_transformer \
    --noise random_mask \
    --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \
    --max-tokens 8000 \
    --save-interval-updates 10000 \
    --max-update 300000

Levenshtein Transformer (LevT, Gu et al., 2019)

fairseq-train \
    data-bin/wmt14_en_de_distill \
    --save-dir checkpoints \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion nat_loss \
    --arch levenshtein_transformer \
    --noise random_delete \
    --share-all-embeddings \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \
    --max-tokens 8000 \
    --save-interval-updates 10000 \
    --max-update 300000