-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpred.py
72 lines (58 loc) · 2.69 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import hydra
from omegaconf import DictConfig
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from mydpr.model.biencoder import MyEncoder
from mydpr.dataset.cath35 import PdDataModule
import torch
from pytorch_lightning.callbacks import BasePredictionWriter
from typing import *
class CustomWriter(BasePredictionWriter):
def __init__(self, output_dir: str, write_interval: str, world_size: int):
super().__init__(write_interval)
self.output_dir = output_dir
if torch.distributed.is_available() and torch.distributed.is_initialized():
world_size = torch.distributed.get_world_size()
for i in range(world_size):
os.makedirs(os.path.join(self.output_dir, str(i)), exist_ok=True)
def write_on_batch_end(
self, trainer, pl_module, prediction: Any, batch_indices: List[int], batch: Any,
batch_idx: int, dataloader_idx: int
):
if torch.distributed.is_available() and torch.distributed.is_initialized():
rank = torch.distributed.get_rank()
torch.save(prediction, os.path.join(self.output_dir, str(rank), "%07d.pt"%batch_idx))
def write_on_epoch_end(
self, trainer, pl_module: 'LightningModule', predictions: List[Any], batch_indices: List[Any]
):
torch.save(predictions, os.path.join(self.output_dir, str(trainer.global_rank), "predictions.pt"))
def configure_callbacks(cfg: DictConfig):
return CustomWriter(output_dir='ebd', write_interval='epoch', world_size=len(cfg.trainer.gpus))
@hydra.main(config_path="conf", config_name="scale_conf")
def main(cfg: DictConfig):
os.environ["MASTER_PORT"] = cfg.trainer.master_port
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.trainer.devices
if cfg.logger.use_wandb:
from pytorch_lightning.loggers import WandbLogger
logger = WandbLogger(project=cfg.logger.project, log_model=cfg.logger.log_model)
else:
logger = True
pl.seed_everything(cfg.trainer.seed)
model = MyEncoder(bert_path=[os.path.join(cfg.model.ckpt_path, 'dhr_qencoder.pt'), os.path.join(cfg.model.ckpt_path, 'dhr_cencoder.pt')])
trainer = pl.Trainer(
devices=cfg.trainer.gpus,
accelerator=cfg.trainer.accelerator,
strategy=cfg.trainer.strategy,
accumulate_grad_batches=cfg.trainer.acc_step,
precision=cfg.trainer.precision,
use_distributed_sampler=False,
#gradient_clip_val=0.5,
logger=logger,
callbacks=configure_callbacks(cfg),
fast_dev_run=False,
)
dm = PdDataModule(cfg.trainer.ur90_path, cfg.trainer.batch_size, model.alphabet, trainer)
trainer.predict(model, datamodule=dm)
if __name__ == "__main__":
main()