-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNoiseRemoval_snapshot.py
91 lines (70 loc) · 2.58 KB
/
NoiseRemoval_snapshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
This script is similar to its counterpart, NoiseRemoval.py, but it operates on individual images as opposed to difference images.
"""
import copy
import numpy as np
from CIMP import Snapshot as snap
import sunpy.map
from sunpy.net import attrs as a
import matplotlib.pyplot as plt
import astroscrappy
import noisegate as ng
from skimage import exposure
from skimage.filters import median
from skimage.filters.rank import enhance_contrast
from skimage.morphology import disk, remove_small_objects, white_tophat
from skimage.restoration import (denoise_tv_chambolle, denoise_bilateral,
denoise_wavelet, estimate_sigma, denoise_nl_means)
import scipy.ndimage
def remove_outliers(im, radius = 2, threshold = 50):
medim = median(im,disk(radius))
outliers = ( (im > medim + threshold) |
(im < medim - threshold) )
out = np.where(outliers, medim, im)
return out
plotcase = 1
if plotcase == 1:
instrument = a.Instrument.lasco
detector = a.Detector.c3
file = '/home/mark.miesch/sunpy/data/lasco_c3/32305543.fts'
#bgfile = '/home/mark.miesch/data/lasco_ssw/3m_clcl_120716.fts'
bgfile = '/home/mark.miesch/data/sswdb/lasco/monthly/3m_clcl_120716.fts'
nrgf = False
scale = None
else:
print("specify a valid plotcase")
exit()
#======================================================================
# get image and remove background
x = snap.snapshot(instrument, detector, file)
a = copy.deepcopy(x.data.astype('float'))
asc = exposure.rescale_intensity(a)
x.background_normalize(bgfile)
b = copy.deepcopy(x.data.astype('float'))
#if nrgf:
# x.nrgf()
# for experimenting
#timerange = a.Time('2016/09/06 8:00:00', '2016/09/06 12:00:00')
#x = ev.event.fromtime(a.Instrument.lasco, a.Detector.c2, timerange)
print(80*'-')
print(x)
print(80*'-')
#======================================================================
#======================================================================
# plot
fig = plt.figure(figsize=[24,12])
p = exposure.equalize_adapthist(asc)
pmap = sunpy.map.Map(p, x.header)
ax = fig.add_subplot(2,3,1,projection=pmap)
pmap.plot(vmin = 0.0, vmax = 1.0)
psc = exposure.rescale_intensity(x.background.astype('float'))
p = exposure.equalize_adapthist(psc)
pmap = sunpy.map.Map(p, x.header)
ax = fig.add_subplot(2,3,2,projection=pmap)
pmap.plot(vmin = 0.0, vmax = 1.0)
p = exposure.equalize_adapthist(b)
pmap = sunpy.map.Map(p, x.header)
ax = fig.add_subplot(2,3,3,projection=pmap)
pmap.plot(vmin = 0.0, vmax = 0.1)
#======================================================================
plt.show()