This repository has been archived by the owner on Feb 9, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 17
/
map.go
391 lines (335 loc) · 9.35 KB
/
map.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Fully persistent data structures. A persistent data structure is a data
// structure that always preserves the previous version of itself when
// it is modified. Such data structures are effectively immutable,
// as their operations do not update the structure in-place, but instead
// always yield a new structure.
//
// Persistent
// data structures typically share structure among themselves. This allows
// operations to avoid copying the entire data structure.
package ps
import (
"bytes"
"fmt"
"unsafe"
)
// A Map associates unique keys with values.
type Map interface {
// IsNil returns true if the Map is empty
IsNil() bool
// Set returns a new map in which key and value are associated.
// If the key didn't exist before, it's created; otherwise, the
// associated value is changed.
// This operation is O(log N) in the number of keys.
Set(key string, value interface{}) Map
// UnsafeMutableSet returns the same map in which key and value are associated
// in-place. If the key didn't exist before, it's created; otherwise, the
// associated value is changed.
// This operation is O(log N) in the number of keys.
// Only use UnsafeMutableSet if you are the only reference-holder of the Map.
UnsafeMutableSet(key string, value interface{}) Map
// Delete returns a new map with the association for key, if any, removed.
// This operation is O(log N) in the number of keys.
Delete(key string) Map
// Lookup returns the value associated with a key, if any. If the key
// exists, the second return value is true; otherwise, false.
// This operation is O(log N) in the number of keys.
Lookup(key string) (interface{}, bool)
// Size returns the number of key value pairs in the map.
// This takes O(1) time.
Size() int
// ForEach executes a callback on each key value pair in the map.
ForEach(f func(key string, val interface{}))
// Keys returns a slice with all keys in this map.
// This operation is O(N) in the number of keys.
Keys() []string
String() string
}
// Immutable (i.e. persistent) associative array
const childCount = 8
const shiftSize = 3
type tree struct {
count int
hash uint64 // hash of the key (used for tree balancing)
key string
value interface{}
children [childCount]*tree
}
var nilMap = &tree{}
// Recursively set nilMap's subtrees to point at itself.
// This eliminates all nil pointers in the map structure.
// All map nodes are created by cloning this structure so
// they avoid the problem too.
func init() {
for i := range nilMap.children {
nilMap.children[i] = nilMap
}
}
// NewMap allocates a new, persistent map from strings to values of
// any type.
// This is currently implemented as a path-copying binary tree.
func NewMap() Map {
return nilMap
}
func (self *tree) IsNil() bool {
return self == nilMap
}
// clone returns an exact duplicate of a tree node
func (self *tree) clone() *tree {
var m tree
m = *self
return &m
}
// constants for FNV-1a hash algorithm
const (
offset64 uint64 = 14695981039346656037
prime64 uint64 = 1099511628211
)
type unsafeString struct {
Data uintptr
Len int
}
type unsafeSlice struct {
Data uintptr
Len int
Cap int
}
var zeroByteSlice = []byte{}
// bytesView returns a view of the string as a []byte.
// It doesn't incur allocation and copying caused by conversion but it's
// unsafe, use with care.
func bytesView(v string) []byte {
if len(v) == 0 {
return zeroByteSlice
}
sx := (*unsafeString)(unsafe.Pointer(&v))
bx := unsafeSlice{sx.Data, sx.Len, sx.Len}
return *(*[]byte)(unsafe.Pointer(&bx))
}
// hashKey returns a hash code for a given string
func hashKey(key string) uint64 {
hash := offset64
for _, b := range bytesView(key) {
hash ^= uint64(b)
hash *= prime64
}
return hash
}
// Set returns a new map similar to this one but with key and value
// associated. If the key didn't exist, it's created; otherwise, the
// associated value is changed.
func (self *tree) Set(key string, value interface{}) Map {
hash := hashKey(key)
return setLowLevel(self, hash, hash, key, value)
}
func setLowLevel(self *tree, partialHash, hash uint64, key string, value interface{}) *tree {
if self.IsNil() { // an empty tree is easy
m := self.clone()
m.count = 1
m.hash = hash
m.key = key
m.value = value
return m
}
if hash != self.hash {
m := self.clone()
i := partialHash % childCount
m.children[i] = setLowLevel(self.children[i], partialHash>>shiftSize, hash, key, value)
// update count if we added a new object
if m.children[i].count > self.children[i].count {
m.count++
}
return m
}
// did we find a hash collision?
if key != self.key {
oops := fmt.Sprintf("Hash collision between: '%s' and '%s'. Please report to https://github.com/mndrix/ps/issues/new", self.key, key)
panic(oops)
}
// replacing a key's previous value
m := self.clone()
m.value = value
return m
}
// UnsafeMutableSet is the in-place mutable version of Set. Only use if
// you are the only reference-holder of the Map.
func (self *tree) UnsafeMutableSet(key string, value interface{}) Map {
hash := hashKey(key)
return mutableSetLowLevel(self, hash, hash, key, value)
}
func mutableSetLowLevel(self *tree, partialHash, hash uint64, key string, value interface{}) *tree {
if self.IsNil() { // an empty tree is easy
m := self.clone()
m.count = 1
m.hash = hash
m.key = key
m.value = value
return m
}
if hash != self.hash {
i := partialHash % childCount
oldChildCount := self.children[i].count
self.children[i] = mutableSetLowLevel(self.children[i], partialHash>>shiftSize, hash, key, value)
// update count if we added a new object
if oldChildCount < self.children[i].count {
self.count++
}
return self
}
// did we find a hash collision?
if key != self.key {
oops := fmt.Sprintf("Hash collision between: '%s' and '%s'. Please report to https://github.com/mndrix/ps/issues/new", self.key, key)
panic(oops)
}
// replacing a key's previous value
self.value = value
return self
}
// modifies a map by recalculating its key count based on the counts
// of its subtrees
func recalculateCount(m *tree) {
count := 0
for _, t := range m.children {
count += t.Size()
}
m.count = count + 1 // add one to count ourself
}
func (m *tree) Delete(key string) Map {
hash := hashKey(key)
newMap, _ := deleteLowLevel(m, hash, hash)
return newMap
}
func deleteLowLevel(self *tree, partialHash, hash uint64) (*tree, bool) {
// empty trees are easy
if self.IsNil() {
return self, false
}
if hash != self.hash {
i := partialHash % childCount
child, found := deleteLowLevel(self.children[i], partialHash>>shiftSize, hash)
if !found {
return self, false
}
newMap := self.clone()
newMap.children[i] = child
recalculateCount(newMap)
return newMap, true // ? this wasn't in the original code
}
// we must delete our own node
if self.isLeaf() { // we have no children
return nilMap, true
}
/*
if self.subtreeCount() == 1 { // only one subtree
for _, t := range self.children {
if t != nilMap {
return t, true
}
}
panic("Tree with 1 subtree actually had no subtrees")
}
*/
// find a node to replace us
i := -1
size := -1
for j, t := range self.children {
if t.Size() > size {
i = j
size = t.Size()
}
}
// make chosen leaf smaller
replacement, child := self.children[i].deleteLeftmost()
newMap := replacement.clone()
for j := range self.children {
if j == i {
newMap.children[j] = child
} else {
newMap.children[j] = self.children[j]
}
}
recalculateCount(newMap)
return newMap, true
}
// delete the leftmost node in a tree returning the node that
// was deleted and the tree left over after its deletion
func (m *tree) deleteLeftmost() (*tree, *tree) {
if m.isLeaf() {
return m, nilMap
}
for i, t := range m.children {
if t != nilMap {
deleted, child := t.deleteLeftmost()
newMap := m.clone()
newMap.children[i] = child
recalculateCount(newMap)
return deleted, newMap
}
}
panic("Tree isn't a leaf but also had no children. How does that happen?")
}
// isLeaf returns true if this is a leaf node
func (m *tree) isLeaf() bool {
return m.Size() == 1
}
// returns the number of child subtrees we have
func (m *tree) subtreeCount() int {
count := 0
for _, t := range m.children {
if t != nilMap {
count++
}
}
return count
}
func (m *tree) Lookup(key string) (interface{}, bool) {
hash := hashKey(key)
return lookupLowLevel(m, hash, hash)
}
func lookupLowLevel(self *tree, partialHash, hash uint64) (interface{}, bool) {
if self.IsNil() { // an empty tree is easy
return nil, false
}
if hash != self.hash {
i := partialHash % childCount
return lookupLowLevel(self.children[i], partialHash>>shiftSize, hash)
}
// we found it
return self.value, true
}
func (m *tree) Size() int {
return m.count
}
func (m *tree) ForEach(f func(key string, val interface{})) {
if m.IsNil() {
return
}
// ourself
f(m.key, m.value)
// children
for _, t := range m.children {
if t != nilMap {
t.ForEach(f)
}
}
}
func (m *tree) Keys() []string {
keys := make([]string, m.Size())
i := 0
m.ForEach(func(k string, v interface{}) {
keys[i] = k
i++
})
return keys
}
// make it easier to display maps for debugging
func (m *tree) String() string {
keys := m.Keys()
buf := bytes.NewBufferString("{")
for _, key := range keys {
val, _ := m.Lookup(key)
fmt.Fprintf(buf, "%s: %s, ", key, val)
}
fmt.Fprintf(buf, "}\n")
return buf.String()
}