-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp.m
129 lines (95 loc) · 5.46 KB
/
temp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#pragma mark -
#pragma mark - Main function where feature extraction happens
//Find Big Round Region in the center
//Use Binarization with Otsu algorithm
//Find single and biggest region
-(void) extractGeometricFeaturesFromRegionOfInterest:(UIImage *) image{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
//Some auxilary matrices to store intermediate outputs
cv::Mat inputImage,copyInputImage,tempThresholdFrame,otsu,markerMask,thresholded,thresholded_All,HSV, HSV_All;
//Save initial input image into OpenCV object
inputImage = [image CVMat];
//Make a copy of the original input image into OpenCV object
copyInputImage = [image CVMat];
//Perform binarization using Otsu method
cv::cvtColor(inputImage, tempThresholdFrame, cv::COLOR_RGB2GRAY);
//Toggle this flag if you want to change manual/automatic thresholding
BOOL manual=FALSE;
if (manual==TRUE)
cv::threshold(tempThresholdFrame,otsu,1,255,CV_THRESH_BINARY);
else
cv::threshold(tempThresholdFrame,otsu,100,255,CV_THRESH_OTSU);
cv::Mat temporary(tempThresholdFrame.rows,tempThresholdFrame.cols,CV_8UC1);
//Find Contours on Binary Image
cv::vector<cv::Mat> contours;
cv::vector<cv::Vec4i> hierarchy;
cv::findContours(otsu, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
//Create a temporary empty image to store contours of ROI for display purposes
cv::Mat tempROIonInputImage = cv::Mat::zeros(inputImage.rows, inputImage.cols, CV_8UC4);
//Perform the contour drawing
BOOL successROI=FALSE;
double totalAreaOfMask=0;
double maskPerimeter=0;
cv::Scalar color = CV_RGB( 255, 255, 255 );
for (int i=0; i<contours.size(); i++) {
double area = cv::contourArea(contours[i]);
if (area>totalAreaOfMask) {
cv::drawContours(tempROIonInputImage, contours, i, color, CV_FILLED, 8, hierarchy);
cv::drawContours(temporary, contours, i, color, CV_FILLED, 8, hierarchy);
maskPerimeter =cv::arcLength(contours[i], YES);
successROI=TRUE;
totalAreaOfMask=area;
}
}
//Check if binary image has at least one big ROI
if (successROI==TRUE) {
//In the meantime update progrss bar to display stage we are in
[self performSelectorOnMainThread:@selector(updateProgress:) withObject:[NSNumber numberWithInt:2] waitUntilDone:YES];
//Find rectangle of ROI
cv::Mat ROIFrame=[self getROIFrom:inputImage withMask:tempROIonInputImage];
//Display ROI
UIImage *ROIFrameImage = [UIImage imageWithCVMat:ROIFrame];
[self displayImage:ROIFrameImage];
//Set ROI image to HSV color space
cv::cvtColor(ROIFrame, HSV, cv::COLOR_RGB2HSV);
//Set some experimental threshold values
cv::Scalar hsv_min = cvScalar(0, 50, 0, 0);
cv::Scalar hsv_max = cvScalar(255, 200, 256, 0);
cv::Scalar hsv_min2 = cvScalar(170, 50, 170, 0);
cv::Scalar hsv_max2 = cvScalar(256, 180, 256, 0);
//Binarize HSV image
cv::inRange(HSV, hsv_min, hsv_max, thresholded);
//Apply morphological operation
cv::morphologyEx(thresholded,thresholded,1,cv::Mat::ones(10, 10, CV_8UC1));
//Find Contours in the binarized image
cv::findContours(thresholded, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
//NSLog(@"Moments: %f , %f",cv::moments(temporary).m10/cv::moments(temporary).m00,cv::moments(temporary).m01/cv::moments(temporary).m00);
//Draw contour around one region: melanoma (hopefully!)
cv::Mat maskROI = cv::Mat::zeros(ROIFrame.rows, ROIFrame.cols, CV_8UC4);
cv::Scalar red = CV_RGB(0,0,250);
//These are the main geometric features
double area=0;
double perimeter=0;
double circularity=0;
double effectiveDiameter=0;
double compactness=0;
double shapeIndex=0;
cv::Scalar blackColor = CV_RGB(0, 0, 0 );
double contourArea=0;
int contourID=0;
for (int i=0; i<contours.size(); i++)
if ((cv::contourArea(contours[i])>VideoQuality*VideoQuality*50000.00)&&(cv::contourArea(contours[i])>contourArea)) {
contourArea = cv::contourArea(contours[i]);
contourID=i;
}
cv::drawContours(maskROI, contours, contourID, color, CV_FILLED, 8);
cv::drawContours(ROIFrame, contours, contourID, blackColor, 5);
//Calculate the geometri characteristics
area = abs(cv::contourArea(contours[contourID])); //Physical size of ROI
perimeter = cv::arcLength(contours[contourID], YES); //Perimeter of contour for ROI
compactness = cv::arcLength(contours[contourID], YES) /(2*1.772*area); //Compactness of ROI
circularity = (2*area*1.772)/cv::arcLength(contours[contourID], YES); //Circularity of ROI
effectiveDiameter = 2* sqrt(area/3.14159); //Effective diameter of ROI
shapeIndex = cv::arcLength(contours[contourID], YES)/(2*sqrt(3.14*area)); //Shape index of ROI
NSLog(@"Area = %f and perimeter = %f, circularity = %f, compactness = %f, shape index = %f effective diameter = %f",area,perimeter,circularity,compactness,shapeIndex,effectiveDiameter);
}