forked from fgolemo/go1-deploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor_critic.py
155 lines (132 loc) · 5.76 KB
/
actor_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Copyright (c) 2021 ETH Zurich, Nikita Rudin
import numpy as np
import torch
import torch.nn as nn
from torch.distributions import Normal
from torch.nn.modules import rnn
class ActorCritic(nn.Module):
is_recurrent = False
def __init__(self, num_actor_obs,
num_critic_obs,
num_actions,
actor_hidden_dims=[256, 256, 256],
critic_hidden_dims=[256, 256, 256],
activation='elu',
init_noise_std=1.0,
**kwargs):
if kwargs:
print("ActorCritic.__init__ got unexpected arguments, which will be ignored: " + str([key for key in kwargs.keys()]))
super(ActorCritic, self).__init__()
activation = get_activation(activation)
mlp_input_dim_a = num_actor_obs
mlp_input_dim_c = num_critic_obs
# Policy
actor_layers = []
actor_layers.append(nn.Linear(mlp_input_dim_a, actor_hidden_dims[0]))
actor_layers.append(activation)
for l in range(len(actor_hidden_dims)):
if l == len(actor_hidden_dims) - 1:
actor_layers.append(nn.Linear(actor_hidden_dims[l], num_actions))
else:
actor_layers.append(nn.Linear(actor_hidden_dims[l], actor_hidden_dims[l + 1]))
actor_layers.append(activation)
self.actor = nn.Sequential(*actor_layers)
# Value function
critic_layers = []
critic_layers.append(nn.Linear(mlp_input_dim_c, critic_hidden_dims[0]))
critic_layers.append(activation)
for l in range(len(critic_hidden_dims)):
if l == len(critic_hidden_dims) - 1:
critic_layers.append(nn.Linear(critic_hidden_dims[l], 1))
else:
critic_layers.append(nn.Linear(critic_hidden_dims[l], critic_hidden_dims[l + 1]))
critic_layers.append(activation)
self.critic = nn.Sequential(*critic_layers)
print(f"Actor MLP: {self.actor}")
print(f"Critic MLP: {self.critic}")
# Action noise
self.std = nn.Parameter(init_noise_std * torch.ones(num_actions))
self.distribution = None
# disable args validation for speedup
Normal.set_default_validate_args = False
# seems that we get better performance without init
# self.init_memory_weights(self.memory_a, 0.001, 0.)
# self.init_memory_weights(self.memory_c, 0.001, 0.)
@staticmethod
# not used at the moment
def init_weights(sequential, scales):
[torch.nn.init.orthogonal_(module.weight, gain=scales[idx]) for idx, module in
enumerate(mod for mod in sequential if isinstance(mod, nn.Linear))]
def reset(self, dones=None):
pass
def forward(self):
raise NotImplementedError
@property
def action_mean(self):
return self.distribution.mean
@property
def action_std(self):
return self.distribution.stddev
@property
def entropy(self):
return self.distribution.entropy().sum(dim=-1)
def update_distribution(self, observations):
mean = self.actor(observations)
self.distribution = Normal(mean, mean*0. + self.std)
def act(self, observations, **kwargs):
self.update_distribution(observations)
return self.distribution.sample()
def get_actions_log_prob(self, actions):
return self.distribution.log_prob(actions).sum(dim=-1)
def act_inference(self, observations):
actions_mean = self.actor(observations)
return actions_mean
def evaluate(self, critic_observations, **kwargs):
value = self.critic(critic_observations)
return value
def get_activation(act_name):
if act_name == "elu":
return nn.ELU()
elif act_name == "selu":
return nn.SELU()
elif act_name == "relu":
return nn.ReLU()
elif act_name == "crelu":
return nn.ReLU()
elif act_name == "lrelu":
return nn.LeakyReLU()
elif act_name == "tanh":
return nn.Tanh()
elif act_name == "sigmoid":
return nn.Sigmoid()
else:
print("invalid activation function!")
return None