
Agile Methods
Morgan Ericsson

<morgan.ericsson@chalmers.se>

mailto:morgan.ericsson@chalmers.se
mailto:morgan.ericsson@chalmers.se

My First Project

• A three year development project ...

• ... to create an online platform to support
student mobility in Europe

• manage programs, courses, students,
grades, contracts, etc.

• I joined in 1996 (about 6-8 months into the
project)	

Vision

• Distributed system, where each university
could either join a shared node or set up
their own node

• Completely web based

• Should replace existing processes (papers)
and interact with existing, local systems

Resources

• Budget of approximately 1M euro (not
including in kind)

• 3 years development time

• Unclear how many persons

• 30-50 persons in total

• about 6 developers

• 4 teams in different parts of Europe

Result

• Huge waste of money

• there was no final product ...

• ... only a set of prototypes that demo’d
various parts of the intended functionality

• no actual value was produced

• Ruined and lost lives (yes, actually!)

Why?

• In my opinion, for main factors

• unrealistic vision/goal

• unsuitable organization

• poor leadership

• the wrong technology

Leadership and
Organization

• The project was initiated with few, if any,
developers available

• senior architects, that focused on
customers, requirements, architecture,
etc.

• several months spent making decisions
that would last the entire project, with
insufficient knowledge

Leadership and
Organization

Leadership and
Organization

• Project managers, not developers, received
technical training on the underlying
technology ...

• ... at luxurious locations, with fancy
dinners

• but at least the developers got a
(photo)copy of the material

Leadership and
Organization

• Strict hierarchy

• the different developer teams were not
supposed to communicate directly

• developers were not included in or
consulted for major decisions ...

• ... and were only told what to do

Technology

• The main application platform was unproven ...

• not many proven platforms existed,

• but the selected one was not even close to
proven

• ... and unfamiliar

• objects rather than relations

• 4GL rather than traditional languages

Technology

Classes and Objects : Public and Private properties

O2C Reference Manu al 39

• Class Specification and encapsulation

The specification of a class is taken to be the pu blic par t of the class
inclu ding read-on ly propert ies.

The pr ivate par t of a class belongs to i ts implementation and is
encapsu lated into the class.

Any methods or at t r ibu tes dealing with a par t icu lar class, i.e. the
“clien ts” of the class, on ly know therefore the class specificat ion. e.g.,

If the type specificat ion of a class is a tuple, at t r ibu tes may be added to
or removed from the tuple at any t im e after the class defin i t ion .

class Person

 type tuple(name: tuple (last_name: string,

 first_name: string),

 photo: Bitmap,

 age: integer,

 read spouse: Person,

 read children: list (Person),

 public dossier_no: real)

 method public is_adult: boolean,

 private add_child(child:Person),

 private salary_bracket:real

end;

OQL by example : Polymorphism

ODMG OQL User Manual 53

stored (an at t r ibu te) or computed (a method). For instance, to get the
age of the oldest chi ld of “Paul”, we wr i te the following qu ery:

Of cou rse, a m ethod can retu rn a complex object or a collect ion and
then i ts cal l can be embedded in a com plex path expression. For
instance, inside a bu ilding b, to know who inhabits those least
expensive apar tmen t, we use the fol lowing path expression:

Although less_expensive is a method we “t raverse” i t as i f i t were a
relat ionship.

Polymorphism

A major cont r ibu t ion of object technology is the possibil ity of
manipu lat ing polymorphic collect ions, and thanks to the “late binding”
mechan ism, to carry ou t gener ic act ions on the elements of these
col lections. For instance, the set Persons contains objects of class
Person, Employee and Student. So far , al l the quer ies against the
Persons exten t dealt with the three possible classes of objects of the
col lection . A qu ery is an expression whose operators operate on typed
operands. It is correct i f the type of operands matches those requ ired by
the operators. In th is sense, OQL is a typed qu ery language. Th is is a
necessary condit ion for an efficient qu ery optimizer . When a
polym orph ic col lect ion is fil tered (for instance Persons), its elements
are stat ically known to be of that class (for instance Person). This
means that a property of a subclass (att r ibu te or method) cannot be
appl ied to su ch an element , except in two impor tant cases: late binding
to a method, or explicit class indicat ion.

• Late binding

To list the act ivit ies of each person , we use the following qu ery:

select max(select c.age

 from c in p.children)

from p in Persons,

where p.name = "Paul"

b.less_expensive.is_used_by.name

select p.activities

from p in Persons

Unrealistic Vision

• Creating and deploying the system would
be a challenge today

• even with mature and accepted web
technologies, and

• expert architects and developers

Unrealistic Vision

• Immature domain and technology

• 6 months requirements and design

• 30 months development

• bad, bad, bad idea

Bad Idea?

• During ’95-’98

• HTML 2.0-4.0, CSS

• IE 1, 2, and 3 released

• Java and Javascript released

• PHP, MySQL, Apache...

All Bad? No!

• Small team, one person to report to

• Fussy requirements and wrong design focus, so
often no “real” direction

• read: room to slack/play

• Technology that few understood

• playground

• Great learning opportunity

Agile Manifesto

• Individuals and interactions over processes
and tools

• Working software over comprehensive
documentation

• Customer collaboration over contract
negotiation

• Responding to change over following a plan

Principles behind the
Agile Manifesto

• Welcome changing requirements, even late
in development. Agile processes harness
change for the customer's competitive
advantage

• Deliver working software frequently, from a
couple of weeks to a couple of months,
with a preference to the shorter timescale.

Functionality

Principles behind the
Agile Manifesto

• Business people and developers must work
together daily throughout the project.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

• Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

Communication
Efficiency

Principles behind the
Agile Manifesto

• The best architectures, requirements, and designs
emerge from self-organizing teams.

If I had to Start Over?

• Embrace what worked, no need to change
for the sake of change

• small teams

• pair programming (came out of necessity,
workstations ~ 10k euro each)

• basically technical parts of XP (very close
to how we approached assignments)

If I had to Start Over?

• Improve the things that did not work

• “user education”

• design and architecture

• trust

• early decisions, uninformed choices

User Education

• About 70,000 domains in ’95 and approximately
10-15m Internet users

• most intended users probably never used a
web browser

• so how could they know what they wanted
the system to do?

• existing paper-based system was probably
translated without too much thinking...

Design and
Architecture

• The system was both over and under
designed

• vision with “epic” scale

• design not particularly epic (e.g., UI)

• problem with architects and
understanding...

Trust

• Difficult issue, different levels

• massive trust within team and at local
site

• yet, not enough trust to contribute at
design decisions

• reason communicated via managers, often
“Chinese whispers / Telephone”

Early Decisions
• Early, uninformed choices most likely would have

“doomed” the system

• platform provider died ’97-’99 and there was
considerable lock-in

• single platform could not evolve with
technology

• even if it was a brilliant choice on paper

• “Nobody” knew how to build it (in practice)

Agile?

• Would an Agile approach solved many of
the problems we faced?

• it would at least have exposed many of
them at an early stage...

Agile?

Agile?

Beliefs

• XP is good, adopting what we did not do
would have provided a lot

• many questions regarding initial RE,
choice of architecture, refactoring

• refactoring is good, “how do you eat an
elephant?”

• running code exposes problems...

Beliefs

• XP needs management, but one size does
not fit all

• we basically did Kanban within the team,

• which was all we needed

• flow, feedback, and not in our faces

• but others may prefer Scrum (or
whatever...)

Beliefs

• Add, don’t remove

• this is not (R)UP,

• so add support functions you need,
modify practices,

• but swap rather than remove

• (unless you know what you are doing)

Beliefs

• When things scale,

• consider structure in multiple dimensions

• that could be flexible over time

Current Practice
• Remember, mainly research-orientation

• but still 1+ KLOC per week / person

• XP with some small-group changes

• Release (delivery) orientation

• but complex organization

• and lacking / difficult management

• Kanban would probably be a good inspiration

• (but remember, only project manager in academia)

