-
Notifications
You must be signed in to change notification settings - Fork 7
/
data_collator.py
390 lines (312 loc) · 15.7 KB
/
data_collator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import math
from dataclasses import dataclass
from typing import Dict, List, Optional
import nltk
import numpy as np
from numpy.random import permutation, poisson
from transformers.data.data_collator import _collate_batch
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase
nltk.download("punkt")
@dataclass
class DataCollatorForTextInfilling:
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
poisson_lambda: float = 3.0
pad_to_multiple_of: Optional[int] = None
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = {}
if isinstance(examples, (dict, BatchEncoding)):
examples_ids = examples["input_ids"]
if "decoder_input_ids" in examples.keys():
examples_dec = examples["decoder_input_ids"]
else:
examples_dec = examples_ids
# bs of one
if type(examples_ids[0]) is int:
examples_ids = [examples_ids]
# bs of one
if type(examples_dec[0]) is int:
examples_dec = [examples_dec]
batch["input_ids"] = _collate_batch(
examples_ids, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
)
batch["decoder_input_ids"] = _collate_batch(
examples_dec, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
)
batch["decoder_input_ids"] = batch["decoder_input_ids"].tolist()
elif isinstance(examples[0], (dict, BatchEncoding)):
batch = self.tokenizer.pad(examples, return_tensors="jax", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch["input_ids"] = _collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
batch["decoder_input_ids"] = _collate_batch(
examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
).tolist()
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(self, inputs):
inputs_copy = np.array(inputs)
labels = np.array(inputs)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = jnp.array(special_tokens_mask, dtype=bool)
else:
special_tokens_mask = special_tokens_mask.bool()
# determine how many tokens we need to mask in total
is_token = ~(labels == self.tokenizer.pad_token_id) & ~special_tokens_mask
num_to_mask = int(math.ceil(is_token.astype(float).sum() * self.mlm_probability))
if num_to_mask == 0:
return inputs, labels
# generate a sufficient number of span lengths
lengths = poisson(lam=self.poisson_lambda, size=(num_to_mask,))
while np.cumsum(lengths, 0)[-1] < num_to_mask:
lengths = np.concatenate([lengths, poisson(lam=self.poisson_lambda, size=(num_to_mask,))])
# remove all spans of length 0
# Note that BART inserts additional mask tokens where length == 0,
# which we do not implement for now as it adds additional complexity
lengths = lengths[lengths > 0]
# trim to about num_to_mask tokens
idx = np.argmin(np.abs(np.cumsum(lengths, 0) - num_to_mask)) + 1
lengths = lengths[: idx + 1]
# select span start indices
# print("IS TOKEN")
# print(is_token)
# print(sum(list(map(lambda x: 1 if(x) else 0, is_token[0]))))
token_indices = np.argwhere(is_token == 1)
# print("TOKEN INDICES")
# print(token_indices)
span_starts = permutation(token_indices.shape[0])[: lengths.shape[0]]
# prepare mask
masked_indices = np.array(token_indices[span_starts])
# print("MASKED INDICES")
# print(masked_indices)
mask = np.full_like(labels, fill_value=False)
# mask span start indices
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
# fill up spans
max_index = labels.shape[1] - 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
while np.any(remaining):
masked_indices[remaining, 1] += 1
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
# place the mask tokens
mask[np.where(special_tokens_mask == True)] = False
inputs_copy[np.where(mask == 1)] = self.tokenizer.mask_token_id
labels[np.where(mask == 0)] = -100
# remove mask tokens that are not starts of spans
to_remove = (mask == 1) & np.roll((mask == 1), 1, 1)
new_inputs = np.full_like(labels, fill_value=self.tokenizer.pad_token_id)
# splits = list(map(lambda x: x.reshape(-1), np.split(inputs_copy, indices_or_sections=2, axis=0))
for i, example in enumerate(np.split(inputs_copy, indices_or_sections=new_inputs.shape[0], axis=0)):
new_example = example[0][~to_remove[i]]
new_inputs[i, 0 : new_example.shape[0]] = new_example
# batching now fixed
return new_inputs.tolist(), labels.tolist()
# Code below is by Matt Bui
@dataclass
class SentenceTokenize:
"""Tokenize documents into sentences, add bos and eos tokens and split sentences into smaller chunks if too long."""
sentence_tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
bos: str = "<s>"
eos: str = "</s>"
max_sentences = 256
sentence_stride = 128
max_characters = 100000
def __call__(self, examples: Dict[str, List[str]]) -> Dict[str, List[str]]:
is_batched = isinstance(examples["text"], list)
if not is_batched:
# raise ValueError("required batched=True in map() method")
examples["text"] = [examples["text"]]
texts = []
# print(f"len(examples['text'] : {len(examples['text'])}")
for doc in examples["text"]:
sentences = self.sentence_tokenizer.tokenize(doc)
start_index = 0
# print(f"doc len: {len(doc)}")
# print(f"sent_tok len: {len(sentences)}")
while start_index < len(sentences):
sentence_span = sentences[start_index : min(len(sentences), start_index + self.max_sentences)]
text = f"{self.eos}{self.bos}".join([sentence for sentence in sentence_span])
# trim text by max characters
if len(text) > self.max_characters:
text = text[: self.max_characters]
texts.append(text)
start_index += self.sentence_stride
# print(len(texts))
# print()
return {"text": texts}
@dataclass
class DataCollatorForSentencePermutation:
tokenizer: PreTrainedTokenizerBase
permutate_sentence_ratio: float = 1.0
def __post_init__(self):
self.full_stop_index = self.tokenizer.eos_token_id
def __call__(self, example: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
source = example["input_ids"]
full_stops = source == self.full_stop_index
# Tokens that are full stops, where the previous token is not
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero()[0] + 2
result = source.copy()
num_sentences = jnp.size(sentence_ends, 0)
num_to_permute = math.ceil((num_sentences * 2 * self.permutate_sentence_ratio) / 2.0)
substitutions = random.permutation(self.random_key, num_sentences)[:num_to_permute]
ordering = jnp.arange(0, num_sentences)
ordering = ops.index_update(
ordering, substitutions, substitutions[random.permutation(self.random_key, num_to_permute)]
)
index = 0
for i in ordering:
sentence = source[(sentence_ends[i - 1] if i > 0 else 0) : sentence_ends[i]]
result = ops.index_update(result, ops.index[index : index + jnp.size(sentence, 0)], sentence)
index += jnp.size(sentence, 0)
example["decoder_input_ids"] = example["input_ids"]
example["input_ids"] = result
return example
@dataclass
class DataCollatorForDenoisingTasks:
"""Data collator used denoising language modeling task in BART.
The implementation is based on
https://github.com/pytorch/fairseq/blob/1bba712622b8ae4efb3eb793a8a40da386fe11d0/fairseq/data/denoising_dataset.py.
The default paramters is based on BART paper https://arxiv.org/abs/1910.13461.
"""
tokenizer: PreTrainedTokenizerBase
mask_ratio: float = 0.3
poisson_lambda: float = 3.0
permutate_sentence_ratio: float = 1.0
pad_to_multiple_of: int = 16
def __post_init__(self):
if self.tokenizer.mask_token is None or self.tokenizer.eos_token is None:
raise ValueError
def __call__(self, examples: List[Dict[str, List[int]]]) -> Dict[str, np.ndarray]:
"""Batching, adding whole word mask and permutate sentences
Args:
examples (dict): list of examples each examples contains input_ids field
"""
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="np")
batch["decoder_input_ids"] = self.shift_tokens_right(batch["input_ids"])
do_permutate = False
if self.permutate_sentence_ratio > 0.0:
batch["input_ids"] = self.permutate_sentences(batch["input_ids"])
do_permutate = True
if self.mask_ratio:
batch["input_ids"], batch["labels"] = self.add_whole_word_mask(batch["input_ids"], do_permutate)
return batch
def shift_tokens_right(self, inputs):
"""Shift decoder input ids right: https://github.com/huggingface/transformers/issues/7961.
Examples:
<s>My dog is cute.</s><s>It loves to play in the park.</s><pad><pad>
shift to -> </s><s>My dog is cute.</s><s>It loves to play in the park.<pad><pad>
"""
shifted_inputs = np.roll(inputs, 1, axis=-1)
# replace first token with eos token
shifted_inputs[:, 0] = self.tokenizer.eos_token_id
# when there's padding, the last eos tokens will not be rotate to first positon
# we'll need to replace it with a padding token
# replace eos tokens at the end of sequences with pad tokens
end_with_eos = np.where(shifted_inputs[:, -1] == self.tokenizer.eos_token_id)
shifted_inputs[end_with_eos, -1] = self.tokenizer.pad_token_id
# find positions where where's the token is eos and its follwing token is a padding token
last_eos_indices = np.where(
(shifted_inputs[:, :-1] == self.tokenizer.eos_token_id)
* (shifted_inputs[:, 1:] == self.tokenizer.pad_token_id)
)
# replace eos tokens with pad token
shifted_inputs[last_eos_indices] = self.tokenizer.pad_token_id
return shifted_inputs
def permutate_sentences(self, inputs):
results = inputs.copy()
full_stops = inputs == self.tokenizer.eos_token_id
sentence_ends = np.argwhere(full_stops[:, 1:] * ~full_stops[:, :-1])
sentence_ends[:, 1] += 2
num_sentences = np.unique(sentence_ends[:, 0], return_counts=True)[1]
num_to_permute = np.ceil((num_sentences * 2 * self.permutate_sentence_ratio) / 2.0).astype(int)
sentence_ends = np.split(sentence_ends[:, 1], np.unique(sentence_ends[:, 0], return_index=True)[1][1:])
for i in range(inputs.shape[0]):
substitutions = np.random.permutation(num_sentences[i])[: num_to_permute[i]]
ordering = np.arange(0, num_sentences[i])
ordering[substitutions] = substitutions[np.random.permutation(num_to_permute[i])]
index = 0
for j in ordering:
sentence = inputs[i, (sentence_ends[i][j - 1] if j > 0 else 0) : sentence_ends[i][j]]
results[i, index : index + sentence.shape[0]] = sentence
index += sentence.shape[0]
return results
def add_whole_word_mask(self, inputs, do_permutate):
labels = inputs.copy()
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
special_tokens_mask = np.array(special_tokens_mask, dtype=bool)
# determine how many tokens we need to mask in total
is_token = ~(labels == self.tokenizer.pad_token_id) & ~special_tokens_mask
num_to_mask = int(math.ceil(is_token.astype(float).sum() * self.mask_ratio))
if num_to_mask == 0:
return inputs, labels
# generate a sufficient number of span lengths
lengths = poisson(lam=self.poisson_lambda, size=(num_to_mask,))
while np.cumsum(lengths, 0)[-1] < num_to_mask:
lengths = np.concatenate([lengths, poisson(lam=self.poisson_lambda, size=(num_to_mask,))])
# remove all spans of length 0
# Note that BART inserts additional mask tokens where length == 0,
# which we do not implement for now as it adds additional complexity
lengths = lengths[lengths > 0]
# trim to about num_to_mask tokens
idx = np.argmin(np.abs(np.cumsum(lengths, 0) - num_to_mask)) + 1
lengths = lengths[: idx + 1]
# select span start indices
# print("IS TOKEN")
# print(is_token)
# print(sum(list(map(lambda x: 1 if(x) else 0, is_token[0]))))
token_indices = np.argwhere(is_token == 1)
# print("TOKEN INDICES")
# print(token_indices)
span_starts = permutation(token_indices.shape[0])[: lengths.shape[0]]
# prepare mask
masked_indices = np.array(token_indices[span_starts])
# print("MASKED INDICES")
# print(masked_indices)
mask = np.full_like(labels, fill_value=False)
# mask span start indices
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
# fill up spans
max_index = labels.shape[1] - 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
while np.any(remaining):
masked_indices[remaining, 1] += 1
for mi in masked_indices:
mask[tuple(mi)] = True
lengths -= 1
remaining = (lengths > 0) & (masked_indices[:, 1] < max_index)
# place the mask tokens
mask[np.where(special_tokens_mask)] = False
inputs[np.where(mask)] = self.tokenizer.mask_token_id
if not do_permutate:
labels[np.where(mask)] = -100
else:
labels[np.where(special_tokens_mask)] = -100
# remove mask tokens that are not starts of spans
to_remove = (mask == 1) & np.roll((mask == 1), 1, 1)
new_inputs = np.full_like(labels, fill_value=self.tokenizer.pad_token_id)
# splits = list(map(lambda x: x.reshape(-1), np.split(inputs_copy, indices_or_sections=2, axis=0))
for i, example in enumerate(np.split(inputs, indices_or_sections=new_inputs.shape[0], axis=0)):
new_example = example[0][~to_remove[i]]
new_inputs[i, 0 : new_example.shape[0]] = new_example
# batching now fixed
return new_inputs, labels